Main Article Content

Abstract

This research aims to evaluate the optimal level and incubation time for the production of hydrolytic enzymes from tempeh starter (TS), in order to increase the in vitro pepsin digestibility of Black Soldier Fly (BSF), Hermetia illucens, maggot flour. The materials used were commercial tempeh starter, pepsin, and 15 days of age dried BSF maggot. In this study, two experiments were conducted. In a factorial completely randomized design, the analysis of variance (ANOVA) was performed to assess the significance of treatment effects, and orthogonal polynomial contrasts were employed to identify specific linear and quadratic trends among the group means. In experiment 1, research was carried out to determine the optimal starter level and incubation time to produce hydrolytic enzymes from tempeh starter. In experiment 2, crude enzyme from the best treatment in the first stage was used to increase the pepsin digestibility of BSF maggot flour. The optimal protein content and enzyme activities of tempeh starter was 0.10-0.13% starter with an incubation time of 2.00-3.47 days. Meanwhile, the optimal pepsin digestibility of BSF maggot flour was 1.51% enzymes with a hydrolysis time of 23.87 hours. This analysis measurement of protein content and enzymatic activity of tempeh starter and in vitro digestibility of BSF flour represent the preliminary methodology used to initially select hydrolyzed BSF flour to be a source of protein in animal feed.

Keywords

Activity Enzymes Hydrolytic Digestibility Tempeh

Article Details

Author Biographies

Sri Rahayu, Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia 53123

Biotechnology Studies, Head of Animal Nutrition Science, Jenderal Soedirman University, Purwokerto

Bambang Hartoyo, Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia 53123

Non-Ruminant Nutrition Studies, Head of the DIII Animal Production Study Program

How to Cite
Hasanah, A., Rahayu, S., Hartoyo, B., Suhartati, F. M., Munasik, M., & Hindratiningrum, N. (2024). Optimization of Hydrolytic Enzyme Production from Tempeh Starter to Increase In Vitro Pepsin Digestibility of Black Soldier Fly Maggot. ANIMAL PRODUCTION, 26(2), 112-124. https://doi.org/10.20884/1.jap.2024.26.2.278

References

  1. Alrumman, S, YSM. Mostafa, S Al-Qahtani, and THT Taha. 2018. Hydrolytic Enzyme Production by Thermophilic Bacteria Isolated from Saudi Hot Springs. OPEN LIFE SCIENCES. 13(1):470–480. https://doi.org/10.1515/biol-2018-0056
  2. Andari, G, NM Ginting, and R Nurdiana. 2021. Black Soldier Fly Larvae (Hermetia illucens) as a Waste Reduction Agent and an Alternative Livestock Feed. JURNAL ILMIAH PETERNAKAN TERPADU. 9(3):246-252. https://dx.doi.org/10.23960/jipt. v9i3.p246-252
  3. Anigboro, AA, EO Egbune, O Akeghware, P Evie, AA Samofordu, and NJ Tonukari. 2022. Biochemical Parameters of Solid-State Fermented Cocoyam (Colocasia esculenta) Using Rhizopus oligosporus at Different Inoculum Sizes. NIGERIAN JOURNAL OF BIOTECHNOLOGY. 39(1):68-74. https://dx.doi.org/10.4314/njb.v39i1.8
  4. Aslamsyah, S, MY Karim, and Badraeni. 2018. Pengaruh Dosis Mikroorganisme Mix. Dalam Memfermentasi Bahan Baku Pakan Yang Mengandung Sargassum sp. Terhadap Kinerja Pertumbuhan, Komposisi Kimia Tubuh dan Indeks Hepatosomatik Ikan Bandeng (Chanos chanos Forsskal). JOURNAL OF FISHERIES AND MARINE SCIENCE. 1(2):59-70
  5. Azrinnahar, M, N Islam, AAS Shuvo, AKM Kabir, and KMS Islam. 2021. Effect of Feeding Fermented (Saccharomyces cerevisiae) De-Oiled Rice Bran in Broiler Growth and Bone Mineralization. JOURNAL OF THE SAUDI SOCIETY OF AGRICULTURAL SCIENCES. 20:476–481. https://doi.org/10.1016/j.jssas.2021.05.006
  6. Baihaqi, RMN, S Rahayu, and T Widiyastuti. 2022. Konsumsi Energi dan Protein Pakan Ayam Sentul yang Disuplementasi Hidrolisat Maggot Black Soldier Fly. Prosiding Seminar Teknologi dan Agribisnis Peternakan IX. Fakultas Peternakan Universitas Jenderal Soedirman. Purwokerto.
  7. Bernfeld, P. 1955. Amylases Alpha and Beta Methods Enzymology. 149-152. http://dx.doi.org/10.1016/0076-6879(55)01021-5
  8. Bollag, DM, and SJ Edelstein. 1996. Protein Methods. 2nd. John Wiley & Sons Inc, New York.
  9. Bonelli, M, D Bruno, M Brilli, N Gianfranceschi, L Tian, G Tettamanti, S Caccia, and M Casartelli. 2020. Black Soldier Fly Larvae Adapt to Different Food Substrates Through Morphological and Functional Responses of the Midgut. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. 21:1-27. doi:10.3390/ijms21144955
  10. Camassola, M and AJP Dillon. 2012. Cellulase Determination: Modifications to Make the Filter Paper Assay Easy, Fast, Practical and Efficient. SCIENTIFIC REPORTS. 1(1):1-4. http://dx.doi.org/ 10.4172/scientificreports.125
  11. El‐Hack, ME, ME Shafi, WY Alghamdi, SA Abdelnour, AM Shehata, AE Noreldin, EA Ashour, AA Swelum, AA Al‐sagan, M Alkhateeb, AE Taha, AME Abdel‐moneim, V Tufarelli, and M Ragni. 2020. Black Soldier Fly (Hermetia illucens) Meal as a Promising Feed Ingredient For Poultry: a Comprehensive Review. AGRICULTURE. 10(8):1-31. https://doi.org/10.3390/agriculture10080339
  12. Faizah, F, F Kusnandar, and S Nurjanah. 2020. Senyawa Fenolik, Oryzanol, dan Aktivitas Antioksidan Bekatul yang Difermentasi Dengan Rhizopus oryzae. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN. 31(1):86–94. https://doi.org/10.6066/jtip.2020.31.1.86
  13. Freitas, ACD, B Escaramboni, AFA Carvalho, VMGD Lima and PDO Neto. 2014. Production and Application of Amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from Industrial Waste in Acquisition of Glucose. CHEMICAL PAPER. 68(4):442-450. DOI: 10.2478/s11696-013-0466-x
  14. Garcia, JS, AS Grau, JG Hernandez, A Heredia, and A Andres. 2022. Nutritional and Antioxidant Changes in Lentils and Quinoa Through Fungal Solid State Fermentation with Pleurotus ostreatus. BIORESOURCES AND BIOPROCESSING. 9:1-15. https://doi.org/10.1186/s40643-022-00542-2
  15. Gendi, HE, AK Saleh, R Badierah, EM Redwan, YA Elmaradny, and EM Elfakharany. 2021. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. JOURNAL OF FUNGI. 8(23):1-26. https://doi.org/10.3390/jof8010023.
  16. Handayani, MT, IG Riani, AS Utami, and OAN Ichsan. 2023. Degradasi Protein Selama Fermentasi Koro Kratok (Phaseolus lunatus) Menggunakan Rhizopus oligosphorus. JURNAL TEKNOLOGI AGRO-INDUSTRI. 10(1):51-64.
  17. Helal, S, HM Abdelhady, KAA Taleb, MG Hasan, and MM Amer. 2021. Lipase From Rhizopus oryzae R1: In-Depth Characterization, Immobilization, and Evaluation in Biodiesel Production. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY. 19(1):1-13. https://doi.org/10.1186/s43141-020-00094-y.
  18. Hidayat, C, 2018. The Utilization of Insects as Feedstuff in Broiler Diet. WARTAZOA. 28(4):161-174. http://dx.doi.org/10.14334/wartazoa.v28i4.1875
  19. Kacobas, DS, Lyne, J and Ustunol, Z, 2022. Hydrolytic Enzymes in the Dairy Industry: Applications, Market and Future Perspectives. TRENDS IN FOOD SCIENCCE & TECHNOLOGY. 119:467-475. https://doi.org/10.1016/j.tifs.2021.12.013
  20. Khan, M. and U. Selamoglu. 2020. Use of Enzymes in Dairy Industry: a Review Of Current Progress. ARCHIVES OF RAZI INSTITUTE. 75(1):131-136. DOI: 10.22092/ARI.2019.126286.1341.
  21. Khasa, R and S Kumar. 2022. Role of Amylase Enzyme in Poultry Feed. BIOLOGICAL FORUM – AN INTERNATIONAL JOURNAL. 14(4a):564-576.
  22. Kim, CH, JH Ryu, J Lee, K Ko, JY Lee, KY Park, and H Chung. 2021. Use of Black Soldier Fly Larvae for Food Waste Treatment and Energy Production in Asian Countries: a review. PROCESSES. 9:1-17. https://doi.org/10.3390/pr9010161
  23. Kojima, Y, M Yokoe and T Mase. 1994. Purification and Characterization of an Alkaline Lipase from Pseudomonas fluorescens AK102. BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY. 58:(9):1564-1568. DOI: 10.1271/bbb.58.1564
  24. Kresnawati, I, R Wahyu, and A Sasongko. 2019. Aktivitas Amilase Bakteri Amilolitik Asal Larva Black Soldier Fly (Hermetia illucens). MENARA PERKEBUNAN. 87(2):140-146. http://dx.doi.org/10.22302/iribb.jur.mp.v87i2.342
  25. Martgrita, MM, RF Kembaren, HN Hutapea, I Sitepu, and EE Simanjuntak. 2023. Amylase Production by Rhizopus oryzae Using Solid State Fermentation with Cassava Solid Waste as Substrate. Proceedings of the 4th International Conference on Life Sciences and Biotechnology (ICOLIB 2021). https://doi.org/10.2991/978-94-6463-062-6_25
  26. Matias, RR, AMZ Sepulveda, BN Batista, JMVM Lucena and PM Albuquerque. 2021. Degradation of Staphylococcus aureus Biofilm Using Hydrolytic Enzymes Produced by Amazonian Endophytic Fungi. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY. 193:2145-2161. https://doi.org/10.1007/s12010-021-03542-8
  27. Miron, L, G Montevecchi, G Bruggeman, LI Macavei, L Maistrello, A Antonelli, and M Thomas. 2023. Functional Properties and Essential Amino Acid Composition of Proteins Extracted From Black Soldier Fly Larvae Reared on Canteen Leftovers. INNOVATIVE FOOD SCIENCE AND EMERGING TECHNOLOGIES. 87:1-9. https://doi.org/10.1016/j.ifset.2023.103407
  28. Montesqrit, Mirzah, and Pratiwi. 2022. Pengaruh Lama Fermentasi Dan Taraf Inokulum Bacillus amyloliquefaciens Terhadap Kandungan Nutrisi Daun Paitan (Tithonia diversifolia). PASTURA. 11(2):91-95. https://doi.org/10.24843/pastura.2022.v11.i02.p04
  29. Nafisah, A, Nahrowi, R Mutia, and A Jayanegara. 2019. Chemical Composition, Chitin and Cell Wall Nitrogen Content of Black Soldier Fly (Hermetia illucens) Larvae After Physical and Biological Treatment. IOP Conference Series: Materials Science and Engineering, 546(4):1-6. https://doi.org/10.1088/1757-899X/546/4/042028
  30. Nugraha, AW, O Suparno, NS Indrasti and Hoerudin. 2022. The Properties of Wet Blue Added Crude Enzyme From Rhizopus oligosporus in The Acid Bating Process. TROPICAL ANIMAL SCIENCE JOURNAL. 45(1):104-111. DOI: https://doi.org/10.5398/tasj.2022.45.1.104
  31. Pasaribu, T. 2018. Efforts to Improve the Quality of Palm Kernel Cake through Fermentation Technology and Enzyme Addition for Poultry. WARTAZOA 28(3):119-128. DOI: http://dx.doi.org/10.14334/wartazoa.v28i3.1820
  32. Pootthachaya, P, W Puangsap, P Bunchalee, P Plangklang, A Reungsang, B Yuangsoi, A Cherdthong, B Tengjaroenkul, S Wongtangtintharn. 2023. Investigation of Nutritional Profile, Protein Digestibility and In Vitro Digestibility of Various Algae Species as an Alternative Protein Source For Poultry Feed. ALGAL RESEARCH. 72:103147. https://doi.org/10.1016/j.algal.2023.103147
  33. Prastika, HH, K Ratnayani, NM Puspawati and AAIAM Laksmiwati. 2019. Penggunaan Enzim Pepsin Untuk Produksi Hidrolisat Protein Kacang Gude (Cajanus cajan (L.) Millsp.) yang Aktif Antioksidan. INDONESIAN E-JOURNAL OF APPLIED CHEMISTRY. 7(2):1-9.
  34. Pratami, T, AB Sitanggang, and CH Wijaya. 2022. Produksi Hidrolisat Protein Kacang Koro Benguk Dengan Aktivitas Penghambat Kerja Enzim Pengkonversi Angiotensin Melalui Kombinasi Fermentasi dan Hidrolisis Enzimatik. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN. 33(2):157-168. https://doi.org/10.6066/jtip.2022.33.2.157
  35. Rahayu, NA, MN Cahhyanto, and E Indrati. 2019. Pola Perubahan Protein Koro Benguk (Mucuna pruriens) Selama Fermentasi Tempe Menggunakan Inokulum Raprima. AGRITECH. 39(2):128-135. http://doi.org/10.22146/agritech.41736
  36. Rahayu, S, and M Bata. 2014. Quality of Chicken Feather Processed in Different Conditions. ANIMAL PRODUCTION. 16(3):170-175.
  37. Rohmah, HF, R Setyaningsih, A Pangastuti, and SLA. Sari. 2019. Optimasi Produksi Selulase Dari Fungi Selulolitik Thielaviopsis ethacetica SLL10 yang Diisolasi Dari Serasah Daun Salak (Salacca edulis). Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia. 5(2):150-154. DOI: 10.13057/psnmbi/m050202.
  38. Sada, A, NE Sugijanto, and AT Poernomo. 2021. Production of Fibrinolytic Enzyme Tempe by Rhizopus oryzae FNCC 6078. BERKALA ILMIAH KIMIA FARMASI. 8(1):1-6. http://dx.doi.org/10.20473/bikfar.v8i1.31202
  39. Soetemans, L, M Uyttebroek, L and Bastiaens. 2020. Characteristics of Chitin Extracted From Black Soldier Fly in Different Life Stages. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 165:3206–3214. https://doi.org/10.1016/j.ijbiomac.2020.11.041
  40. Sun, QX, XC Li, XH Tan, YW Dong, CH You, HL Yuan, YY Lu, YH Huang, and M Zhou. 2021. Digestive Physiological Characteristics of Black Soldier Fly Larvae Reared on Five Organic Wastes. JOURNAL OF INSECTS AS FOOD AND FEED. 8(5):451-467. https://doi.org/10.3920/JIFF2021.0059
  41. Thapa, S, H Li, J Ohair, S Bhatti, FC Chen, KA Nasr, T Johnson and S Zhou. 2019. Biochemical Characteristics of Microbial Enzymes and Their Signifcance From Industrial Perspectives. MOLECULAR BIOTECHNOLOGY. 61:579-601. https://doi.org/10.1007/s12033-019-00187-1
  42. Thomas, L, H Ram, and VP Singh. 2018. Inducible Cellulase Production From an Organic Solvent Tolerant Bacillus sp. SV1 and Evolutionary Divergence of Endoglucanase in Different Species of the Genus Bacillus. BRAZILIAN JOURNAL OF MICROBIOLOGY. 49:429-442. https://doi.org/10.1016/j.bjm.2017.05.010
  43. Walter, H. E. 1984. Proteinases (Protein as Substrates) Method with Haemoglobin, Casein and Azocoll as Substrate di dalam Bergmeyer J, Grassl M, editor. Methods of Enzymatic Analysis Edisi Ke-3. Verlag Chemie, Weinheim.
  44. Zaefarian, F, AJ Cowieson, K Pontoppidan, MR Abdollahi, and V Ravindran. 2021. Trends in Feed Evaluation for Poultry with Emphasis on In Vitro Techniques. ANIMAL NUTRITION. 7(2021):268-281. https://doi.org/10.1016/j.aninu.2020.08.006
  45. Zozo, B, MM Wicht, VV Mshayisa, and JV Wyk. 2022. The Nutritional Quality and Structural Analysis of Black Soldier Fly Larvae Flour Before and After Defatting. INSECTS. 13(2):3-11. https://doi.org/10.3390/insects13020168