Main Article Content

Abstract

This study developed slow-release urea (SRU) additives using autoclaved oil palm empty fruit bunches (OPEFB) and urea via wet granulation to improve nitrogen utilization in ruminants. OPEFB was autoclaved at 121°C and 1 atm pressure to create a stable matrix, which was then combined with urea in different proportions to form SRU. In the first phase, the physical and morphological properties of autoclaved and non-autoclaved OPEFB were analysed using Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. Neutral detergent fibre (NDF) and acid detergent fibre (ADF) were measured, with hemicellulose calculated as the difference between NDF and ADF. In the second phase, SRU formulations included varying percentages of urea and autoclaved OPEFB: SRU 100 (100% urea), SRU 98 (2% OPEFB), SRU 96 (4% OPEFB), SRU 94 (6% OPEFB), SRU 92 (8% OPEFB), and SRU 90 (10% OPEFB). SEM and FTIR descriptively showed surface changes in OPEFB after autoclaving, including increased porosity. Autoclaving also descriptively reduced NDF, ADF, lignin, cellulose, and hemicellulose contents. In vitro rumen incubation revealed that the addition of autoclaved OPEFB in SRU reduced urea release and pH in the rumen at various time intervals: 3, 6, 9, and 24 hours. SRU with autoclaved OPEFB optimizes urea use and controls nitrogen release.

Keywords

autoclave empty fruit bunch feed additive in vitro slow-release urea

Article Details

Author Biography

Rakhmad Perkasa Harahap, Study Program of Animal Science, Faculty of Agriculture, Tanjungpura University, Pontianak, Indonesia

Research focuses on animal nutrition, particularly ruminant and poultry nutrition. I have authored multiple publications and has been cited over 200 times since 2019. My research contributions have earned a h-index of 8 in Google Scholar. I have 20 indexed documents in Scopus, with a h-index of 6.

How to Cite
Harahap, R. P., Tohardi, A., Prihambodo, T. R., Esesa, A. S., & Tanjung, M. P. (2025). Development of Slow-Release Urea Additives Using Autoclaved Oil Palm Empty Fruit Bunches and Urea via Wet Granulation for Ruminants. ANIMAL PRODUCTION, 27(1), 18-28. Retrieved from https://jap.fapet.unsoed.ac.id/index.php/JAP/article/view/353

References

  1. Aktawan, A, Maryudi, S Salamah, and E Astuti. 2020. Gasification of Oil Palm Shells and Empty Fruit Bunches to Produce Gas Fuel. Key Engineering Materials. 849:3–7. http://doi.org/10.4028/www.scientific.net/kem.849.3
  2. Anam, NK, RI Pujaningsih, and BWHE Prasetiyono. 2012. Kadar Neutral Detergent Fiber dan Acid Detergent Fiber pada Jerami Padi dan Jerami Jagung yang Difermentasi Isi Rumen Kerbau. Animal Agriculture Journal. 1(2):352–361. Retrieved from http://ejournal-s1.undip.ac.id/index.php/aaj
  3. Azeem, B, K KuShaari, M Naqvi, L Kok Keong, MK Almesfer, Z Al-Qodah, SR Naqvi, and N Elboughdiri. 2020. Production and Characterization of Controlled Release Urea Using Biopolymer and Geopolymer as Coating Materials. Polymers. 12(2):400. http://doi.org/10.3390/polym12020400
  4. Bina, M, Syaruddin, LO Sahara, and M Sayuti. 2023. Kandungan Selulosa, Hemiselulosa, dan Lignin dalam Silase Ransum Komplit dengan Taraf Jerami Sorgum (Sorghum Bicolor (L.) Moench) yang Berbeda. Journal of Feed and Fiber Analysis. 2(1):44–53.
  5. Brito, VC, L das DF da Silva, MCG de Arruda, DK de S Tagliatella, FA Grandis, VH Bumbieris Junior, LC Ramos, HS de Camargo, VH Pereira, and IY Mizubuti. 2021. Ruminal parameters and in-situ degradability of rations with wheat middling substitution for corn. Semina: Ciências Agrárias. 42(3Supl1):1707–1724. http://doi.org/10.5433/1679-0359.2021v42n3supl1p1707
  6. Chen, C, J Tan, Z Wang, W Zhang, G Wang, and X Wang. 2022. Effect of acetylation modification on the structure and properties of windmill palm fiber. Textile Research Journal. 92(19--20):3693–3703. http://doi.org/https://doi.org/10.1177/00405175221091882
  7. Chen, Q, Y Chen, and C Wu. 2023. Probing the evolutionary mechanism of the hydrogen bond network of cellulose nanofibrils using three DESs. International Journal of Biological Macromolecules. 234:123694. http://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.123694
  8. Csóka, L, W Csoka, E Tirronen, E Nikolskaya, Y Hiltunen, and B Ohtani. 2024. Exploring the Molecular Structure and Treatment Dynamics of Cellulose Fibres with Photoacoustic and Reversed Double-Beam Spectroscopy. Preprints. http://doi.org/10.20944/preprints202410.2039.v1
  9. de Medeiros, TTB, AM de Azevedo Silva, AL da Silva, LR Bezerra, DL da Silva Agostini, DL V de Oliveira, SE Mazzetto, LR V Kotzebue, JR Oliveira, GSB Souto, A de Barros Carvalho, AJ Netto, and RL Oliveira. 2018. Carnauba wax as a wall material for urea microencapsulation. Journal of the Science of Food and Agriculture. 99(3):1078–1087. http://doi.org/10.1002/jsfa.9275
  10. Dewi, SP, M Ridla, EB Laconi, and A Jayanegara. 2018. Increasing the Quality of Agricultural and Plantation Residues using Combination of Fiber Cracking Technology and Urea for Ruminant Feeds. Tropical Animal Science Journal. 41(2):137–146. http://doi.org/10.5398/tasj.2018.41.2.137
  11. Dinani, OP, K Pramod, MA Tyagi, A Wani, H Ongmoo, and K Sharma. 2020. Review on Feeding Value of Rice Gluten Meal. International Journal of Current Microbiology and Applied Sciences. 9(6):155–167. http://doi.org/10.20546/IJCMAS.2020.906.155
  12. Fan, C, H Li, S Li, G Zhong, W Jia, Z Zhuo, Y Xue, AF Koontz, and J Cheng. 2024. Effect of Different Slow‐Release Urea on the Production Performance, Rumen Fermentation and Blood Parameter of Angus Heifer. Preprints. http://doi.org/10.20944/preprints202406.1431.v1
  13. Fularz, A, S Almohammed, and JH Rice. 2021. Metal-Free Cellulose-Based Platforms for Biomolecule Fluorescence Signal Enhancement. ACS Sustainable Chemistry & Engineering. 10(1):508–520. http://doi.org/10.1021/acssuschemeng.1c06995
  14. Gardinal, R, JR Gandra, GD Calomeni, THA Vendramini, CS Takiya, JE de Freitas Júnior, HN de Souza, and FP Rennó. 2016. Effects of polymer coated slow-release urea on ruminal fermentation and nutrient total tract digestion of beef steers. Revista Brasileira de Zootecnia. 45(2):63–70. http://doi.org/10.1590/s1806-92902016000200004
  15. Harahap, RP, A Jayanegara, Nahrowi, and S Fakhri. 2018. Evaluation of oil palm fronds using fiber cracking technology combined with Indigofera sp. in ruminant ration by Rusitec. In AIP Conference Proceedings (pp. 050008 (1–6)). http://doi.org/https://doi.org/10.1063/1.5062758
  16. Jayanegara, A, NF Ardhisty, SP Dewi, RR Antonius, RB Laconi, Nahrowi, and M Ridla. 2018. Enhancing Nutritional Quality of Oil Palm Empty Fruit Bunch for Animal Feed by Using Fiber Cracking Technology. Advances in Animal and Veterinary Sciences. 7(1):157–165.
  17. Kostryukov, SG, HB Matyakubov, YY Masterova, AS Kozlov, MK Pryanichnikova, AA Pynenkov, and NA Khluchina. 2023. Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. Journal of Analytical Chemistry. 78(6):718–727. http://doi.org/10.1134/s1061934823040093
  18. Li, D, FZ Zhu, JY Li, P Na, and N Wang. 2013. Preparation and Characterization of Cellulose Fibers from Corn Straw as Natural Oil Sorbents. Industrial & Engineering Chemistry Research. 52(1):516–524. http://doi.org/https://doi.org/10.1021/ie302288k
  19. Li, S, Y Cui, Y Zhou, Z Luo, J Liu, and M Zhao. 2017. The industrial applications of cassava: current status, opportunities and prospects. Journal of the Science of Food and Agriculture. 97(8):2282–2290. http://doi.org/https://doi.org/10.1002/jsfa.8287
  20. Mentz, A, W Niekerk, A Hassen, R Coertze, and B Gemeda. 2016. Effect of diets differing in rumen soluble nitrogen on utilization of poor-quality roughage by sheep. South African Journal of Animal Science. 45(5):528–538. http://doi.org/10.4314/sajas.v45i5.10
  21. Moura, AMA de, CP de Santos, KAA Torres-Cordido, LS Glória, RA Weigel, and T V Melo. 2020. Types of sterilization in feed containing different lipidic sources for golden hamster (Mesocricetus auratus). Ciência Animal Brasileira. 21. http://doi.org/10.1590/1809-6891v21e-50426
  22. Muryanto, M, F Amelia, MN Izzah, R Maryana, E Triwahyuni, TB Bardant, E Filailla, Y Sudiyani, and M Gozan. 2022. Delignification of empty fruit bunch using deep eutectic solvent for biobased-chemical production. IOP Conference Series: Earth and Environmental Science. 1108(1):12013. http://doi.org/10.1088/1755-1315/1108/1/012013
  23. Muthia, D, M Ridla, EB Laconi, R Ridwan, R Fidriyanto, M Abdelbagi, RP Harahap, and A Jayanegara. 2021. Effects of Ensiling, Urea Treatment and Autoclaving on Nutritive Value and In-vitro Rumen Fermentation of Rice Straw. Advances in Animal and Veterinary Sciences. 9(5). http://doi.org/10.17582/journal.aavs/2021/9.5.655.661
  24. Nazir, MS, BA Wahjoedi, AW Yussof, and MA Abdullah. 2013. Eco-Friendly Extraction and Characterization of Cellulose from Oil Palm Empty Fruit Bunches. BioResources. 8(2):2161–2172. http://doi.org/10.15376/biores.8.2.2161-2172
  25. Onwuka, JC, EB Agbaji, VO Ajibola, and FG Okibe. 2019. Thermodynamic pathway of lignocellulosic acetylation process. BMC Chemistry. 13(1). http://doi.org/https://doi.org/10.1186/s13065-019-0593-8
  26. Pangau, JR, HF Sangian, and BM Lumi. 2017. Karakterisasi Bahan Selulosa Dengan Iradiasi Pretreatment Gelombang Mikro Terhadap Serbuk Kayu Cempaka Wasian (Elmerillia Ovalis) Di Sulawesi Utara. Jurnal MIPA. 6(1):53. http://doi.org/10.35799/jm.6.1.2017.16157
  27. Pereira, EI, AR Nogueira, CCT Cruz, GGF Guimarães, MM Foschini, ACC Bernardi, and C Ribeiro. 2017. Controlled Urea Release Employing Nanocomposites Increases the Efficiency of Nitrogen Use by Forage. ACS Sustainable Chemistry & Engineering. 5(11):9993–10001. http://doi.org/10.1021/acssuschemeng.7b01919
  28. Pinos-Rodríguez, JM, S Lípez, R Bírcena, SS Gonzílez-Muñoz, JCD Río-García, and Y Jasso. 2010. Effect of a polymer-coated urea based diet on the performance of lactating dairy cows. Journal of Applied Animal Research. 37(2):201–205. http://doi.org/10.1080/09712119.2010.9707124
  29. Procedures, GL. 1966. General Laboratory Procedures. Madison: Department of Dairy Science, University of Wisconsin.
  30. Quintana, E, M Ago, C Valls, MB Roncero, and OJ Rojas. 2018. Alternative chemo-enzymatic treatment for homogeneous and heterogeneous acetylation of wood fibers. Cellulose. 25(9):5323–5336. http://doi.org/https://doi.org/10.1007/s10570-018-1947-4
  31. Rotaru, R, ME Fortună, E Ungureanu, and CO Brezuleanu. 2024. Effects of Ultrasonication in Water and Isopropyl Alcohol on High-Crystalline Cellulose: A Fourier Transform Infrared Spectrometry and X-ray Diffraction Investigation. Polymers. 16(16):2363. http://doi.org/https://doi.org/10.3390/polym16162363
  32. Sá, RM de, CS de Miranda, and NM José. 2015. Preparation and Characterization of Nanowhiskers Cellulose from Fiber Arrowroot (Maranta arundinacea). Materials Research. 18(suppl 2):225–229. http://doi.org/10.1590/1516-1439.366214
  33. Salami, SA, M Devant, J Apajalahti, V Holder, S Salomaa, JD Keegan, and CA Moran. 2021. Slow-Release Urea as a Sustainable Alternative to Soybean Meal in Ruminant Nutrition. Sustainability. 13(5):2464. http://doi.org/10.3390/su13052464
  34. Sasongko, WT, T Wahyono, DA Astuti, AR Syahputra, S Widodo, and A Jayanegara. 2024. Use of irradiated chitosan as a matrix for slow-release urea and in vitro fermentation characteristics of slow-release urea supplementation in ruminant rations. Veterinary World. 319–328. http://doi.org/10.14202/vetworld.2024.319-328
  35. Seo, JK, MH Kim, JY Yang, HJ Kim, CH Lee, KH Kim, and JK Ha. 2013. Effects of synchronicity of carbohydrate and protein degradation on rumen fermentation characteristics and microbial protein synthesis. Asian-Australasian Journal of Animal Sciences. 26(3):358–365. http://doi.org/10.5713/ajas.2012.12507
  36. Sitorus, TF, and TI Lumbantoruan. 2020. Kadar NDF dan ADF Limbah Kulit Kakao yang Difermentasi dengan Ragi Isi Rumen. Jurnal Ilmiah Peternakan. 1(1):24–30.
  37. Theodorou, MK, and AE Brooks. 1990. Evaluation of A New Laboratory Procedure for Estimating the Fermentation Kinetics of Tropical Feeds.
  38. Van Soest, PJ van, JB Robertson, and B Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74(10):3583–3597.
  39. Vârban, R, I Crișan, D Vârban, A Ona, L Olar, A Stoie, and R Ștefan. 2021. Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. Applied Sciences. 11(18):8570. http://doi.org/10.3390/app11188570
  40. Wang, H, D Aoki, Y Teramoto, S Tsuchikawa, and T Inagaki. 2024. Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose: tracking lattice changes following physical treatments. Cellulose. 31(7):4085–4098. http://doi.org/10.1007/s10570-024-05834-8
  41. Wei, J, Y Long, T Li, H Gao, and Y Nie. 2024. Exploring hydrogen-bond structures in cellulose during regeneration with anti-solvent through two-dimensional correlation infrared spectroscopy. International Journal of Biological Macromolecules. 267:131204. http://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.131204
  42. Zhang, X, G-E Qing, J-L Gao, X-F Yu, S-P Hu, B-Z Zhang, and S-C Han. 2021. Microbial Community Succession is Associated With Corn Straw Degradation in Microbial Consortium M44 During Subculture. http://doi.org/10.21203/rs.3.rs-929285/v1
  43. Zhuang, X, Q Yu, W Wang, W Qi, Q Wang, X Tan, and Z Yuan. 2012. Decomposition Behavior of Hemicellulose and Lignin in the Step-Change Flow Rate Liquid Hot Water. Applied Biochemistry and Biotechnology. 168(1):206–218. http://doi.org/10.1007/s12010-011-9468-8

Most read articles by the same author(s)