Main Article Content

Abstract

This study evaluated the effect of chestnut tannin as a silage additive on agro-industrial by-products for animal feed. The research utilized a Completely Randomized Design with five treatments and five replications. The treatments were T1 (Complete Feed as control) and T2, T3, T4, and T5 with chestnut tannins at 0.50%, 1%, 1.50%, and 2% DM, respectively, all fermented for 30 days at room temperature. Observed parameters included proximate analysis (crude protein, crude fat, crude fiber, and ash), temperature, humidity, mold growth, dry matter loss, physical quality of silage (texture, aroma, color), and fresh silage quality. The data were analyzed using variance analysis and DMRT at a 5% significance level. The results showed that the addition of 2% chestnut tannin can produce silage with relatively higher crude protein, while oil fat and crude fiber are relatively the same as other treatments; however, the addition of 2% chestnut tannin tends to produce silage with ash content relatively lower than other treatments. Chestnut tannins significantly affected (P<0.05) moisture, texture, aroma, ammonia, and total VFA of fresh silage. In conclusion, adding 1.50-2% chestnut tannins to complete feed silage reduces dry matter loss, protects crude protein, maintains physical quality, inhibits mold growth, and stabilizes temperature, resulting in high-quality silage.

Keywords

chestnut tannin complete feed nutrien silage total VFA ammonia

Article Details

How to Cite
Sadarman, S., Febrina, D., Febriyanti, R., Peter, R., Zulkarnain, Z., Sirajuddin, S., Gazali, I., Hafid, A., Qomariyah, N., Sastrawan, S., & Prihambodo, T. R. (2024). Complete Feed Silage Innovation: Utilization of Agro-Industry by-Products with Chestnut Tannin as Additives. ANIMAL PRODUCTION, 26(3), 163-175. https://doi.org/10.20884/1.jap.2024.26.3.337

References

  1. AOAC. 2019. Official Methods of Analysis, 21st edn. Rockville, Maryland. USA.
  2. Battelli, M., S. Colombini., G.M. Crovetto., G. Galassi., F. Abeni., F. Petrera., M.T. Manfredi, and L. Rapetti. 2024. Condensed tannins fed to dairy goats: Effects on digestibility, milk production, blood parameters, methane emission, and energy and nitrogen balances. Journal of Dairy Science, Volume 107, Issue 6, Pages 3614-3630, ISSN 0022-0302, https://doi.org/10.3168/jds.2023-24076.
  3. Bernardes, T.F., J.R.S. Gervásio., G. De Morais, and D.R. Casagrande. 2019. Technical note: A comparison of methods to determine pH in silages. Journal Dairy Science, 102: 9039–9042.
  4. Brutti, D.D., M.E.A. Canozzi., E.D. Sartori., D. Colombatto, and J.O.J. Barcellos. 2023. Effects of the use of tannins on the ruminal fermentation of cattle: A meta-analysis and meta-regression. Animal Feed Science and Technology, Volume 306, 115806, ISSN 0377-8401, https://doi.org/10.1016/j.anifeedsci.2023.115806.
  5. Carvalho, M.G.M., J.M. Bragatto., S.C. Buttow., A.F. Silva., L.S. Silva., N.G. Silva., H.U. Auerbach., L.G. Nussio, and J.L.P. Daniel. Applying the fermentability coefficient concept in tropical grass silages. Animal Feed Science and Technology, Volume 314, 115995, ISSN 0377-8401, https://doi.org/10.1016/j.anifeedsci.2024.115995.
  6. Chen, L., X. Bao., G. Guo., W. Huo., Q. Xu., C. Wang, and Q. Liu. 2021. Treatment of alfalfa silage with tannin acid at different levels modulates ensiling characteristics, methane mitigation, ruminal fermentation patterns and microbiota. Animal Feed Science and Technology, Volume 278, 114997, ISSN 0377-8401, https://doi.org/10.1016/j.anifeedsci.2021.114997.
  7. Conway, E. 1993. Microdiffusion of Analysis of Association Official Analytical Chemist. Georgia (US): Georgia Press.
  8. Dryden, G.M. 2021. Fundamentals of Applied Animal Nutrition. CABI Press. England.
  9. Fonseca, N.V.B., A. da. S. Cardoso., Y.T. Granja-Salcedo., D. Siniscalchi., K.D.V. Camargo., I.A. Dornellas., M.L.C. Silva., L. dos. S.D. Vecchio., R.K. Grizotto, and R.A. Reis. 2024. Effects of condensed tannin-enriched alternative energy feedstuff supplementation on performance, nitrogen utilization, and rumen microbial diversity in grazing beef cattle. Livestock Science, Volume 287, 105529, ISSN 1871-1413, https://doi.org/10.1016/j.livsci.2024.105529.
  10. Genís, S., M. Verdú., J. Cucurull, and M. Devant. 2021. Complete feed versus concentrate and straw fed separately: Effect of feeding method on eating and sorting behavior, rumen acidosis, and digestibility in crossbred Angus bulls fed high-concentrate diets. Animal Feed Science and Technology 273 (2021) 114820.
  11. Gómez, J.F.M., D.S. Antonelo., M. Beline., B. Pavan., D.B. Bambil., P. Fantinato-Neto., A. Saran-Netto., P.R. Leme., R.S. Goulart., D.E. Gerrard, and S.L. Silva. 2021. Feeding strategies impact animal growth and beef color and tenderness. Meat Science, Volume 183, 2022-108599, https://doi.org/10.1016/j.meatsci.2021.108599.
  12. Guimarães, L.J., M. Zundt., M.P. Tsujiguchi., F.M. Giotto., M.J.P.T. Barbosa., F.A. Grandis., I.G. Silva., M.C.S. Pereira, and E.L.A. Ribeiro. The use of condensed tannin in lambs' diet alters the rumen protozoa population without affecting growth performance. Small Ruminant Research, Volume 229, 107122, ISSN 0921-4488, https://doi.org/10.1016/j.smallrumres.2023.107122.
  13. Hartinger, T., T. Gruber., K. Fliegerová., G. Terler, and Q. Zebeli. 2024. Mixed ensiling with by-products and silage additives significantly valorizes drought-impaired whole-crop corn. Animal Feed Science and Technology, Volume 309, 115899, ISSN 0377-8401, https://doi.org/10.1016/j.anifeedsci.2024.115899.
  14. Hassoun, P., M.A. Cordoba., S. Parisot., D. Portes., J. Pradel, and F. Bocquier. 2021. Effects of different supplement amounts on dry matter intake, milk production and milk composition of high-producing Lacaune dairy ewes. Livestock Science, Volume 251, 104664, ISSN 1871-1413, https://doi.org/10.1016/j.livsci.2021.104664.
  15. Hynd, P.I. 2019. Animal Nutrition from Theory to Practice. CABI Publisher.
  16. Ibrahim, S.L. and A. Hassen. 2022. Effect of non-encapsulated and encapsulated mimosa (Acacia mearnsii) tannins on growth performance, nutrient digestibility, methane and rumen fermentation of South African mutton Merino ram lambs. Animal Feed Science and Technology, Volume 294, 115502, ISSN 0377-8401, https://doi.org/10.1016/j.anifeedsci.2022.115502.
  17. Irawan, A., A. Sofyan., R. Ridwan., H.A. Hassim., A.N. Respati., W.W. Wardani., Sadarman., W.D. AstutI, and A. Jayanegara. 2021. Effects of different lactic acid bacteria groups and fibrolytic enzymes as additives on silage quality: A meta-analysis. Bioresource Technology Reports, Volume 14, June 2021, 100654.
  18. Jung, J.S., J.W.C. Wong., I. Soundharrajan., Ki-W. Lee., H.S. Park., D. Kim., Ki-C. Choi., S.W. Chang, and B. Ravindran. 2024. Changes in microbial dynamics and fermentation characteristics of alfalfa silage: A potent approach to mitigate greenhouse gas emission through high-quality forage silage. Chemosphere, Volume 362, 142920, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2024.142920.
  19. Katoch, R. 2023. Techniques in Forage Quality Analysis. Springer. Singapore.
  20. Kriswantoro, J.A and C.Y. Chu. 2024. Biohydrogen production kinetics from cacao pod husk hydrolysate in dark fermentations: Effect of pretreatment, substrate concentration, and inoculum. Journal of Cleaner Production, Volume 434, 140407, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2023.140407.
  21. Leon-Tinoco, A.Y., B.C. Guimarães., S.T.R. Almeida., D.C. Reyes., S. Rivera., M. Killerby., C. Wu., B. Perkins., C. Knight, and J.J. Romero. 2022. Effect of lignosulfonates on the dry matter loss, nutritional value, and microbial counts of high moisture alfalfa silage. Animal Feed Science and Technology, Volume 290, 115346, ISSN 0377-8401, https://doi.org/10.1016/j.anifeedsci.2022.115346.
  22. Makkar, H.P.S and P.E. Vercoe. 2007. Measuring Methane Production from Ruminants. Springer Science & Business Media. New York, United State.
  23. McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., Sinclair, L.A, and Wilkinson, R.G. 2022. Animal Nutrition 8th Edn. Pearson. Singapore.
  24. Moore, R. 2018. Principles of Animal Nutrition. Scientific e-Resources Publisher.
  25. Niderkorn, V., E. Barbier., D. Macheboeuf., A. Torrent., I. Mueller-Harvey and H. Hoste. 2019. In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Animal Feed Science and Technology.
  26. Niyigena, V., K.P. Coffey., D. Philipp., M.C. Savin., J. Zhao., H.D. Naumann., J.M. Diaz., S.P. Park., R.L. Rhein, and S.L. Shelby. 2024. Intake, digestibility, rumen fermentation and nitrogen balance in sheep offered alfalfa silage with different proportions of the tannin-rich legume sericea lespedeza. Animal Feed Science and Technology, Volume 308, 115863, ISSN 0377-8401, https://doi.org/10.1016/j.anifeedsci.2023.115863.
  27. Palacios, C.E., A. Nagai., P. Torres., J.A. Rodrigues and A. Salatino. 2021. Contents of tannins of cultivars of sorghum cultivated in Brazil, as determined by four quantification methods. Food Chemistry, Pp. 337.
  28. Pereira da Silva, R., K. dos Santos Nascimento., A. R. de Sousa., O.T. Medeiros., M.F.A. Macêdo., T.P. Dias-Silva., R.L. Edvan, and M.J. de Araújo. 2021. Influence of the phenological stage at harvest of sesame (Sesamum indicum) on silage quality, Animal Feed Science and Technology, Volume 281, 2021- 115102, https://doi.org/10.1016/j.anifeedsci.2021.115102.
  29. Rossi, L.G., C.H.S. Rabelo., M.E.B. Andrade., G.R. Siqueira., E.F. Vicente., D.A. Nogueira, and R.A. Reis. 2023. Feed intake, digestibility, ruminal fermentation, growth performance, and carcass traits of lambs fed corn silage treated with Lentilactobacillus buchneri and stored for different times. Animal Feed Science and Technology, Volume 304, 115751, ISSN 0377-8401, https://doi.org/10.1016/j.anifeedsci.2023.115751.
  30. Sabariah, B., F. Norfadzrin., M.I. Noor., A. Aswanimiyuni., H. Haryani., M.H. Ahmad, and A.A.H. Saiful. 2018. Effect of probiotics in fermented palm kernel meal (FPKM) and total mixed ration (TMR) to improve milk production in mafriwal dairy cattle of malaysia veterinary institute (IVM) farm. Malaysian J. Vet. Res. 9(1): 45-51.
  31. Sadarman, Ridla M, Nahrowi, Sujarnoko TUP, Ridwan R and Jayanegara A. 2019a. Evaluation of ration based on soy sauce by-product on addition of acacia tanin: an in vitro study. 9th Annual Basic Science International Conference. Material Science and Engineering 546(2019)022020.
  32. Sadarman, Ridla M, Nahrowi, Ridwan R, Harahap RP, Nurfitriani RA, Jayanegara A. 2019b. Kualitas Fisik Silase Ampas Kecap dengan Aditif Tanin dari akasia (Acacia mangium Wild.). Jurnal Peternakan. 16(2): 66-75.
  33. Sadarman, Ridla M, Nahrowi N, Ridwan R, Jayanegara A. 2020. Evaluation of ensiled soy sauce by-product combined with several additives as an animal feed. Veterinary World. 13(5): 940-946.
  34. Sadarman., Febriana,D., Wahyono,T., Adli, D.N., Qomariyah, N.N., Nurfirtiani, R.A., Murshid, S., Oktafyan, Y.A., Zulkarnain, dan Prasetyo, A.B. 2022. Pengaruh penambahan aditif tanin chestnut terhadap kualitas silase kelobot jagung (Zea mays). Jurnal Nutrisi Ternak Tropis, 5(1): 37-44. https://doi.org/10.21776/ub.jnt.2021.005.01.4.
  35. Sadarman, Handoko, J., Febrina, D., Febriyanti, R., Purba, R. A., Ramadhan, E. S., Qomariyah, N., Gholib, Nurfitriani, R. A., Adli, D. N, dan Khairi, F. 2023a. Evaluasi Penggunaan Kombinasi Aditif Berbasis Molases dan Sirup Komersial Afkir yang dapat Menstimulasi Pertumbuhan Mikroba Baik terhadap Profil Fermentasi Silase Tebon Jagung. Jurnal Nutrisi Ternak Tropis, 6(1), 57-68. doi: 10.21776/ub.jnt.2023.006.01.7.
  36. Sadarman., Febrina, D., Trisna Rinaldi, S., Hendri, H., Ichwan Ilyazar, M., Weno, W., Alfian, A., Amalia Nurfitriani, R., Qomariyah, N., Sukmara, A., Koswara, E., Rachmanto Prihambodo, T., Gholib, G, and Faiz Mohd Azmi, A. 2023b. The Quality of Organic Waste Market Ensiled Using Rejected Commercial Syrup as An Alternative Ruminant Livestock Feed. Animal Production, 25(3), 186-198. https://doi.org/10.20884/1.jap.2023.25.3.257.
  37. Sadarman., R.P. Harahap., A.F.M. Azmi., D. Febrina., R. Febriyanti., Gholib., Yunilas., N. Qomariyah., R.A. Nurfitriani, and F. Khairi. 2024. Physico-chemical Characterization of Tofu By-Product Silage Supplemented with Fine Rice Bran and Chestnut Tannin as Silage Additives. Jurnal Nutrisi Ternak Tropis, 7(2), 108-114. https://doi.org/10.21776/ub.jnt.2024.007.02.4.
  38. Saha, S.K and N.N. Pathak. 2021. Fundamentals of Animal Nutrition, 1st Edn. Springer Nature. Singapore.
  39. Santoso, B., T.W. Widayati and B.T. Hariadi. 2020. Improvement of Fermentation and the In Vitro Digestibility Characteristics of Agricultural Waste-Based Complete Feed Silage with Cellulase Enzyme Treatment. Adv. Anim. Vet. Sci. 8(8): 873-881.
  40. Theodorou, M.K and A.E. Brook. 1990. Evaluation of a New Laboratory Procedure for Estimating the Fermentation Kinetic of Tropical Feeds. Annual Report AFRC Institute, Hurley, Maidenhead, London.
  41. Tian, J., N. Xu., B. Liu., H. Huan., H. Gu., C. Dong, and C. Ding. 2020. Interaction effect of silo density and additives on the fermentation quality, microbial counts, chemical composition and in vitro degradability of rice straw silage. Bioresource Technology, Volume 297, 122412, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2019.122412.
  42. Yin, X., J. Wu., J. Tian., X. Wang, and J. Zhang. 2021. Dried soybean curd residue: A promising absorbent for cleaner production of high-quality silage, Journal of Cleaner Production, Volume 324, 2021, 129300, https://doi.org/10.1016/j.jclepro.2021.129300.
  43. Zotte, A.D., M. Cullere., G. Tasoniero., Z. Gerencsér., Z. Szendrő., E. Novelli, and Z. Matics. 2018. Supplementing growing rabbit diets with chestnut hydrolyzable tannins: Effect on meat quality and oxidative status, nutrient digestibilities, and content of tannin metabolites. Meat Science, Volume 146, Pages 101-108, ISSN 0309-1740, https://doi.org/10.1016/j.meatsci.2018.08.007.

Most read articles by the same author(s)