Main Article Content

Abstract

The purpose of this study is to identify the non-genetic variables that have a substantial impact on the milk output per lactation of FH dairy cows at BBPTUHPT Baturraden and to construct variables' correction factors. The National Dairy Cow and Forage Breeding Center (BBPTUHPT) of Baturraden provided the secondary data for the study, which included 1,942 unique records of the amount of milk produced per lactation by 1,015 FH dairy cows born between 2000 and 2014 (a total of 1,015 lactation records). Milk output per lactation, the number of milking days (100–600), the age at calving (575–2,993 days), the lactation phase (lactation 1-6), and the season of birth were among the studied variables. The F test was used to examine the impact of non-genetic factors on the amount of milk cows produce per lactation (ANOVA).  The impact of season on milk output per lactation was examined using a student t-test. Utilizing the multivariate least squares method, correction factors were created. Age at calving, which ranges from 1750 to 2000 days, milking days, which range from 300 to 350, and the dry season serve as the primary benchmarks for constructing correction factors. The R program was used to generate and run statistical tests and graphic representation. The findings indicated that the age of calving and lactation period had a very strong correlation (r= 0.94). The number of milking days, age at calving, and season at birth all significantly affected milk output per lactation, with the variance contributing 84.16 percent to the overall variation, according to the results of multivariate analysis (P < 0.01). Actual milk production had a mean (standard deviation) of 3710.55 kg, while adjusted milk production had a mean (standard deviation) of 5167.91 kg. The adjustment parameters can lower the variation in milk production each lactation by 57.92%. (43.00 percent vs 18.09 percent).  Conclusion: Non-genetic variability was successfully reduced by correcting milk production data on the number of days of milking, age at calving, and season at birth.

Keywords

Dairy cows environmental factors production reproduction non-genetic

Article Details

Author Biographies

Agus Susanto, Animal Breeding and Genetics Laboratory, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia

 

 

Dattadewi Purwantini, Animal Breeding and Genetics Laboratory, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia

 

 

Setya Agus Santosa, Animal Breeding and Genetics Laboratory, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia

 

 

Dewi Puspita Candrasari, Animal Breeding and Genetics Laboratory, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia

 

 

How to Cite
Susanto, A., Purwantini, D., Agus Santosa, S., & Puspita Candrasari, D. (2023). Study of Non-Genetic Factors Affecting Dairy Cow’s Milk Production and the Development of Correction Factors for Selection of FH Cattle in Indonesia. ANIMAL PRODUCTION, 25(2), 71-82. https://doi.org/10.20884/1.jap.2023.25.2.221

References

  1. Ali, I, SM Suhail, and M Shafiq. 2019. Heritability estimates and genetic correlations of various production and reproductive traits of different grades of dairy cattle reared under subtropical condition. Reprod. Domest. Anim. 54:1026–1033. doi:10.1111/rda.13458.
  2. Anggraeni, A, Y Fitriyani, A Atabany, and I Komala. 2008. Penampilan Produksi Susu dan Reproduksi Sapi Friesian-Holstein di Balai Pengembangan Perbibitan Ternak Sapi Perah Cikole, Lembang.
  3. Astuti, M, R Widiati, and YY Suranindyah. 2016. Efisiensi Produksi Usaha Sapi Perah Rakyat (Studi Kasus pada Peternak Anggota Koperasi Usaha Peternakan dan Pemerahan Sapi Perah Kaliurang, Sleman, Yogyakarta) (Production Efficiency of Smallholder Dairy Cattle Farming (Case Study on The Farmer Members of. Bul. Peternak. 34:64. doi:10.21059/buletinpeternak.v34i1.108.
  4. Cilek, S, and E Sahin. 2009. Estimation of some genetic parameters (heritability and repeatability) for milk yield in the Anatolian population of Holstein cows. Arch. Zootech. 12:57–64.
  5. Cole, JB, DJ Null, and PM VanRaden. 2009. Best prediction of yields for long lactations. J. Dairy Sci. 92:1796–1810. doi:10.3168/jds.2007-0976. Available from: http://dx.doi.org/10.3168 /jds.2007-0976
  6. Cziszter, LT, R Ionel, DE Ilie, D Gavojdian, S Acatinc, E Silvia, S Baul, and I Tripon. 2013. Estimating the Lactation Curve on a . m ./ p . m . Milkings in Dairy Cows. 46:296–301.
  7. Van Eetvelde, M, G de Jong, K Verdru, ML van Pelt, M Meesters, and G Opsomer. 2020. A large-scale study on the effect of age at first calving, dam parity, and birth and calving month on first-lactation milk yield in Holstein Friesian dairy cattle. J. Dairy Sci. 103:11515–11523. doi:10.3168/jds.2020-18431.
  8. Estiningtyas, W, F Ramadhani, and E Aldrian. 2007. Analisis Korelasi Curah Hujan dan Suhu Permukaan Laut Wilayah Indonesia, Serta Implikasinya untuk Prakiraan Curah Hujan (Studi Kasus Kabupaten Cilacap). Agromet. 21:46–60. doi:10.29244/j.agromet.21.2.46-60. Available from: https://jurnal.ipb.ac.id/index.php/ agromet/article/view/3479
  9. Everett, RW, HW Carter, and JD Burke. 1968. Evaluation of the Dairy Herd Improvement Association Record System. J. Dairy Sci. 51:153–162. doi:10.3168/jds.S0022-0302(68)86940-1. Available from: http://linkinghub.elsevier.com/ retrieve/pii/S0022030268869401
  10. Falconer, D, and T Mackay. 1996. Introduction to quantitative genetics. Essex. UK Longman Gr.
  11. Henderson, CR. 1984. Applications of Linear Models in Animal Breeding. University of Guelph Press, Guelph, ON, Canada.
  12. Indrijani, H. 2008. penggunaan catatan produksi susu 305 hari dan catatan produksi susu test day (hari uji) untuk menduga nilai pemuliaan produksi susu sapi perah. Disertasi. Progr. Pascasarj. Uiversitas Padjadjaran, Bandung. 114.
  13. Ismael, H, D Janković, D Stanojević, V Bogdanović, S Trivunović, and R Djedović. 2021. Estimation of heritability and genetic correlations between milk yield and linear type traits in primiparous Holstein-Friesian cows. Rev. Bras. Zootec. 50:1–10. doi:10.37496/RBZ5020200121. Available from: http://www.scielo.br/j/rbz/a/QKcSxCKpz fj6pJzw4rG9PKx/abstract/?lang=en
  14. Jingar, S, RK Mehla, M Singh, and AK Roy. 2014. Lactation Curve Pattern and Prediction of Milk Production Performance in Crossbred Cows. J. Vet. Med. 2014:1–6. doi:10.1155/2014/814768. Available from: http://www.hindawi.com/ journals/jvm/2014/814768/
  15. Krisnamurti, E, D Purwantini, and DM Saleh. 2019. Penaksiran Heritabilitas Karakteristik Produksi dan Reproduksi Sapi Perah Friesen Holstein di BBPTU-HPT Baturraden. TERNAK Trop. J. Trop. Anim. Prod. 20:8–15. doi:10.21776/ub. jtapro.2019.020.01.2.
  16. López, S, J France, NE Odongo, RA McBride, E Kebreab, O AlZahal, BW McBride, and J Dijkstra. 2015. On the analysis of Canadian Holstein dairy cow lactation curves using standard growth functions. J. Dairy Sci. 98:2701–2712. doi:10.3168/JDS.2014-8132.
  17. Mrode, RA. 2014. Linear Models for the Prediction of Animal Breeding Values: 3rd Edition. CABI.
  18. Narwaria, US, RK Mehla, KK Verma, S. S. Lathwal, R. Yadav, and A. K. Verma. 2015. Study of short lactation in Sahiwal cattle at organized farm. Vet. World. 8:690–694. doi:10.14202/vetworld. 2015.690-694.
  19. Nasrullah, M Niimi, R Akashi, and O Kawamura. 2003. Nuritive evalution of forage plants grown in South Sulawesi, Indonesia. Asian-Australasian J. Anim. Sci. 16:693–701. doi:10.5713/AJAS.2003.693.
  20. Pasaribu, A, Firmansyah, and N Idris. 2015. 2656-Article Text-5258-1-10-20160212. J. Ilmu-Ilmu Peternak. XVIII:28–35.
  21. Pickering, NK, MGG Chagunda, G Banos, R Mrode, JC McEwan, and E Wall. 2015. Genetic parameters for predicted methane production and laser methane detector measurements1. J. Anim. Sci. 93:11–20. doi:10.2527/jas.2014-8302.
  22. R Core Team. 2020. R: A Language and Environment for Statistical Computing. Available from: https://www.r-project.org/
  23. Rokhayati, UA. 2010. Pengaruh suplementasi energi dan Undegrated Protein terhadap Produksi Susu Sapi Perah Friesian Holstein. INOVASI. 7:33–43.
  24. RStudio Team. 2020. RStudio: Integrated Development Environment for R. Available from: http://www.rstudio.com/
  25. Santos, RC, and TME Santos. 1979. Effect of neonatal malnutrition on leucine renewal and protein biosynthesis in neurons of rats. Brain Res. Bull. 4:207–211. doi:10.1016/0361-9230(79)90283-1.
  26. Santosa, SA, ATA. Sudewo, and A Susanto. 2014. Penyusunan Faktor Koreksi Produksi Susu Sapi Perah. Agripet. 14:1–5.
  27. Shafii, S, S Upadhyaya, and R Garrett. 1996. The importance of experimental design to the development of empirical prediction equations: A case study. Trans. ASAE. 39:377–384.
  28. Stefani, G, L El Faro, ML Santana Júnior, and H Tonhati. 2018. Association of longevity with type traits, milk yield and udder health in Holstein cows. Livest. Sci. 218:1–7. doi:10.1016/j.livsci.2018.10.007.
  29. Suardin, S, N Sandiah, and R Aka. 2015. Kecernaan Bahan Kering dan Bahan Organik Campuran Rumput Mulato (Brachiaria hybrid cv. mulato) dengan Jenis Legum berbeda Menggunakan Cairan Rumen Sapi. J. Ilmu dan Teknol. Peternak. Trop. 1:16. doi:10.33772/jitro.v1i1.357.
  30. Susanto, A, ATA Sudewo, D Setya, and A Santosa. 2011. Effect Of The Genetic Connectedness On Animal Ranking And Selection Response. Pros. Semin. Nas. Teknol. AGRIBISNIS Peternak. 468–473. Available from: http://jnp.fapet.unsoed.ac.id /index.php/psv/article/view/1007
  31. Susanto, A, Suyadi, VMA Nurgiartiningsih, and L Hakim. 2018. (Co)variance components and genetics parameter estimation for linear traits in Holstein cattle in Indonesia: Traits related to foot/leg and udder. Arch. Anim. Breed. 61:491–496. doi:10.5194/aab-61-491-2018. Available from: /pmc/articles/PMC7065408/?report=abstract
  32. Tisman, R, and WPB Putra. 2015. Relationship between body measurements and Body weight in Bali (Bos javanicus) and Bali cross (Bos taurus x Bos javanicus) bulls in Muaro Jambi Regency of Indonesia. 10.
  33. Warwick, EJ, JM Astuti, and W Hardjosubroto. 1995. Ilmu Pemuliaan Ternak. Edisi keli. Gadjah Mada University Press., Yogyakarta.
  34. Wondifraw, Z. 2013. Effect of non-genetic factors on milk production of Holstein Friesian Deoni crossbred cows. Int. J. Livest. Prod. 4:106–112. doi:10.5897/ijlp2013.0173.