Main Article Content

Abstract

This experiment aimed to evaluate chemical composition, in vitro rumen fermentation, digestibility, and methane emissions of forages including bede grass, gamal (Gliricidia sepium), Indigofera, lamtoro (Leucaena leucocephala), elephant grass, mini elephant grass and Thai elephant grass. Forage samples were dried at 60oC for 24 hours, then ground to 1 mm sieve. The ground samples were used subsequently to determine the chemical composition and in vitro rumen fermentation test. Incubation was carried out in a water bath at 39oC for 48 h without replication. The results showed that all forages contained various crude protein at a range of 9-20% DM. The proportion of neutral detergent insoluble CP (NDICP) and acid detergent insoluble CP (ADICP) in forage was generally low, but the highest was found in bede grass. The highest NH3 concentration was found in Indigofera incubation, and lowest was in bede grass. All forage samples, except for mini elephant grass and Indigofera, had IVDMD and IVOMD below 70%. We identified low methane emissions from forage at 48 hours of incubation. It was concluded that legumes had a higher crude protein than in grass species and had low methane emissions. However, the relatively low digestibility of legume may limit its utilization.

Keywords

forage rumen fermentation Leucaena leucocephala indigofera elephant grass

Article Details

How to Cite
Pratama, S. M., Wajizah, S., Jayanegara, A., & Samadi, S. (2022). Evaluation of Some Forage as Feed for Ruminant Animal: Chemical Composition, In Vitro Rumen Fermentation, and Methane Emissions. ANIMAL PRODUCTION, 24(3), 150-160. https://doi.org/10.20884/1.jap.2022.24.3.179

References

  1. Afrizal, A, R Sutrisna, and M Muhtarudin. 2014. Potensi Hijauan sebagai Pakan Ruminansia di Kecamatan Bumi Agung Kabupaten Lampung Timur. Jurnal Ilmiah Peternakan Terpadu. 2(2): 233366.
  2. Agus, A and TSM Widi. 2018. Current situation and future prospects for beef cattle production in Indonesia - A review. Asian-Australasian Journal of Animal Sciences. 31(7): 976–983. https://doi.org/10.5713/ajas.18.0233
  3. Agustono, B, M Lamid, A Ma’ruf, and MTE Purnama. 2018. Identifikasi Limbah Pertanian dan Perkebunan Sebagai Bahan Pakan Inkonvensional Di Banyuwangi. Jurnal Medik Veteriner. 1(1): 12. https://doi.org/10.20473/jmv.vol1.iss1.2017.12-22
  4. Ahmed, MA, S Jusoh, AR Alimon, M Ebrahimi, and AA Samsudin. 2018. Nutritive and anti-nutritive evaluation of Kleinhovia hospita, Leucaena leucocephala and Gliricidia sepium with respect to their effects on in vitro rumen fermentation and gas production. Tropical Animal Science Journal. 41(2): 128–136. https://doi.org/10.5398/tasj.2018.41.2.128
  5. Alfiansyah, AH, and H Hartutik. 2021. Tren Produksi Gas, Produksi Gas Total dan Degradasi Secara In Vitro Dengan Penambahan Aditif Dengan Level Berbeda Pada Silase Tebon Jagung (Zea Mays L.). Jurnal Nutrisi Ternak Tropis. 4(2): 77–87. https://doi.org/10.21776/ub.jnt.2021.004.02.2
  6. Andis, MF, N Sandiah, and S Syamsuddin. 2020. Produksi Rumput Odot (Pennisetum purpureum Cv . Mott) sebagai Pakan Ternak pada Berbagai Dosis Pupuk Kandang Sapi. JIPHO (Jurnal Ilmiah Peternakan Hulu Oleo), 2(2), 156–159.
  7. AOAC. 2005. Official Methods of Analysis. 15th Edition, Association of Official Analytical Chemist, Washington DC.
  8. Argadyasto, D, Y Retnani, and D Diapari. 2015. Pengolahan daun lamtoro secara fisik dengan bentuk mash, pellet dan wafer terhadap performa domba. Buletin Ilmu Makanan Ternak, 102(1): 19–26. https://jurnal.ipb.ac.id/index.php/bulmater/article/view/12484%0Ahttps://jurnal.ipb.ac.id/index.php/bulmater/article/download/12484/9547
  9. Costa, ND and CD Costa. 2017. The Level Of Legumes Supplementation In The Basal Diet Of Rice Straw On Intake And Digestibility Of Ongole Crossbred Cows. 7(10): 13–19.
  10. Dal Pizzol, JG, HMN Ribeiro-Filho, A Quereuil, A Le Morvan, and V Niderkorn. 2017. Complementarities between grasses and forage legumes from temperate and subtropical areas on in vitro rumen fermentation characteristics. Animal Feed Science and Technology, 228(April), 178–185. https://doi.org/10.1016/j.anifeedsci.2017.04.020
  11. Dhia, KS, KA Kamil, and H Tanuwira. 2019. Kecernaan Dan Fermentabilitas Substrat Kombinasi Mineral– Fungi Dalam Rumen. Jurnal Ilmiah Peternakan Terpadu, 7(2): 217-222. https://doi.org/10.23960/jipt.v7i2.p217-222
  12. Dumadi, EH, L Abdullah,and HA Sukria. 2021. Kualitas Hijauan Rumput Gajah (Pennisetum purpureum) Berbeda Tipe Pertumbuhan: Review kuantitatif. JINTP, 19(1): 6–13.
  13. Eniolorunda, OO. 2010. Evaluation of biscuit waste meal and Leucaena leucocephala leaf hay as sources of protein and energy for fattening “yankassa” rams. African Journal of Food Science, 5(2): 57–62. http://www.academicjournals.org/ajfs
  14. Fathul, F and S Wajizah. 2010. Penambahan Mikromineral Mn dan Cu dalam Ransum terhadap Aktivitas Biofermentasi Rumen Domba Secara In Vitro. JITV, 215(1): 9–15. https://doi.org/10.1136/bmj.2.2853.388
  15. Fievez, V, OJ Babayemi, and D Demeyer. 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology, 123-124 Part 1(March 2018): 197–210. https://doi.org/10.1016/j.anifeedsci.2005.05.001
  16. Firsoni and E Lisanti. 2017. Potensi Pakan Ruminansia dengan Penampilan Produksi Gas Secara In Vitro Bahan Penelitian Bahan pakan yang diujikan di dalam penelitian ini yaitu kulit kopi , kulit kacang tanah , daun turi kering yang diperoleh dari propinsi Nusa Tenggara Barat digiling h. Jurnal Peternakan Indonesia, 19(3), 136–144.
  17. Hambakodu, M, EP Ranja, and MA Sudarma. 2021. Nilai VFA dan NH3 Rumput Alam Padang Penggembalaan Kecamatan Haharu Kabupaten Sumba Timur. Jurnal Ilmu Peternakan Terapan. 5(1): 8–12. https://doi.org/10.25047/jipt.v5i1.2588
  18. Harahap, N, E Mirwandhono, and HD Hanafi. 2020. Uji Kecernaan Bahan Kering, Bahan Organik, Kadar Nh3 Dan Vfa Pada Pelepah Daun Sawit Terolah Pada Sapi Secara In Vitro. JURNAL PETERNAKAN. 1(1): 13–21.
  19. Higgs, RJ, LE Chase, and ME Van Amburgh. 2012. Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows. Journal of Dairy Science. 95(4): 2004–2014. https://doi.org/10.3168/jds.2011-4810
  20. Jayanegara, A, SP Dewi, N Laylli, EB Laconi, E. B., Nahrowi, and M Ridla. 2016. Determination of cell wall protein from selected feedstuffs and its relationship with ruminal protein digestibility in vitro. Media Peternakan, 39(2), 134–140. https://doi.org/10.5398/medpet.2016.39.2.134
  21. Jayanegara, A, SP Dewi, and M Ridla. 2016. Nutrient content, protein fractionation, and utilization of some beans as potential alternatives to soybean for ruminant feeding. Media Peternakan, 39 (3): 195–202. https://doi.org/10.5398/medpet.2016.39.3.195
  22. Jin, X, I Angelidaki, and Y Zhang. 2016. Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion. Environmental Science and Technology. 50 (8): 4422–4429. https://doi.org/10.1021/acs.est.5b05267
  23. Kara, K, S Özkaya, S Erbaş, and E Baytok. 2018. Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley-based concentrated mix feed of beef cattle. Journal of Applied Animal Research. 46(1): 178–183. https://doi.org/10.1080/09712119.2017.1284073
  24. Kasiga, T and R Lochmann. 2014. Nutrient Digestibility of Reduced-Soybean-Meal Diets Containing Moringa or Leucaena Leaf Meals for Nile tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society. 45(2): 183–191. https://doi.org/https://doi.org/10.1111/jwas.12102
  25. Khoiriyah, M, S Chuzaemi, and H Sudarwati. 2016. Effect Of Flour And Papaya Leaf Extract (Carica Papaya L.) Addition To Feed On Gas Production, Digestibility And Energy Values In Vitro. J. Ternak Tropika. 17(2): 74–85.
  26. Mariani, NP and NN Suryani. 2016. Kecernaan Dan Produk Fermentasi Rumen (in Vitro) Ransum Sapi Bali Induk Dengan Level Energi Berbeda the Digestibility and Product of Rumen Fermentation (in Vitro) Ration of Female Bali Cattle At Different Level of Energy. Majalah Ilmiah Peternakan. 19(3): 93–96.
  27. Muhakka, A Napoleon, and H Isti’adah. 2013. Pengaruh Pemberian Asap Cair Terhadap Pertumbuhan Rumput Raja. Pastura. 3(1): 30–34.
  28. Mukmin, A, H Soetanto, Kusmartono, and Mashudi. 2014. Produksi gas in vitro asam amino metionin terproteksi dengan serbuk mimosa sebagai sumber condensed tannin (CT). J. Ternak Tropika. 15(2): 36–43. http://www.elsevier.com/locate/scp
  29. National Research Council. 2001. Nutrient requirement of dairy cattle. The National Academy Press, Washington DC.
  30. Nisa, F, A Subrata, and E Pangestu. 2018. Kehilangan Bahan Kering, Acid Detergent Fiber dan N-Acid Detergent Fiber Daun Moringa oleifera Secara In Vitro. Jurnal Sain Peternakan Indonesia. 13(3): 282–286. https://doi.org/10.31186/jspi.id.13.3.282-286
  31. Nurhayu, A and A Saenab. 2019. Pertumbuhan, Produksi dan Kandungan Nutrisi Hijauan Unggul pada Tingkat Naungan yang Berbeda. Jurnal Agripet. 19(1): 40–50. https://doi.org/10.17969/agripet.v19i1.13250
  32. Nurlaha, L Abdullah, and D Diapari. 2015. Kecukupan Asupan Nutrien Asal Hijauan Pakan Kambing PE di Desa Totallang-Kolaka Utara (Forage based Nutrient Intake Sufficiency for Etawah Crossbred Goat in Totallang Village-North Kolaka). Jurnal Ilmu Pertanian Indonesia (JIPI). 20(1): 18–25. journal.ipb.ac.id/index.php/JIPI
  33. Orskov, ER and I Mcdonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science. 92(2): 499–503. https://doi.org/10.1017/S0021859600063048
  34. Pamungkas, Y, M Christiyanto, and A Subrata. 2014. Kecernaan Bahan Kering Dan Bahan Organik Secara In Vitro Ampas Aren Yang Difermentasi Dengan Penambaha Nitrogen,Phospor Dan Potassium. Animal Agriculture Journal. 3(2): 353–361.
  35. Pelletier, S, GF Tremblay, A Bertrand, G Bélanger, Y Castonguay, and R Michaud. 2010. Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Animal Feed Science and Technology. 157(3–4): 139–150. https://doi.org/10.1016/j.anifeedsci.2010.02.010
  36. Pratama, SM, S Wajizah, A Jayanegara, and S Samadi. 2019. Evaluation of Agro-Industrial by Products as Potential Local Feed for Ruminant Animals: Chemical Composition, Fiber Fractions and In Vitro Rumen Fermentation. Animal Production. 20(3): 155. https://doi.org/10.20884/1.jap.2018.20.3.715
  37. Putri, A, Purnomoadi, and E Purbowati. 2014. Bobot badan, tinggi pinggul, lebar pinggul dan panjang pinggul kambing kacang betina di kabupaten karanganyar. Animal Agriculture Journal. 3(2): 221–229.
  38. Ramadhani, E and A Suprayogi. 2020. Analisis potensi hijauan bahan pakan ternak ruminansia di Desa Sukawening Kecamatan Dramaga Kabupaten Bogor Jawa Barat. Jurnal Pusat Inovasi Masyarakat. 2(3): 451–454.
  39. Ramdani, D, M Marjuki, and S Chuzaemi. 2017. Pengaruh perbedaan jenis pelarut dalam proses ekstraksi buah mengkudu (Morinda citrifolia L.) pada pakan terhadap viabilitas protozoa dan produksi gas in-vitro. Jurnal Ilmu-Ilmu Peternakan. 27(2): 54–62. https://doi.org/10.21776/ub.jiip.2017.027.02.07
  40. Samadi, SM Pratama, S Wajizah, and A Jayanegara. 2020. Evaluation of agro-industrial by products as potential local feed for ruminant animals: Volatile fatty acid and NH3 concentration, gas production and methane emission. IOP Conference Series: Earth and Environmental Science, 425(1), 0–6. https://doi.org/10.1088/1755-1315/425/1/012010
  41. Saputra, IKTA, AAAS Trisnadewi, and IGLO Cakra. 2019. Kecernaan In Vitro dan Produk Fermentasi dari Silase Jerami Padi yang Dibuat dengan Penambahan Cairan Rumen. Journal of Tropical Animal Science 7(2): 647–660. https://simdos.unud.ac.id/uploads/file_penelitian_1_dir/80a62e1b18443e312ea393947017b283.pdf
  42. Slegers, PM, RJK Helmes, M Draisma, R Broekema, M Vlottes, and SWK van den Burg. 2021. Environmental impact and nutritional value of food products using the seaweed Saccharina latissima. Journal of Cleaner Production. 319(August), 128689. https://doi.org/10.1016/j.jclepro.2021.128689
  43. Smith, P and PJ Gregory. 2013. Climate change and sustainable food production. Proceedings of the Nutrition Society. 72(1): 21–28. https://doi.org/10.1017/S0029665112002832
  44. Syamsi, AN and HS Widodo. 2020. Synchronization protein-energy index of various forages for dairy livestock: an in vitro study. Animal Production. 22(2): 92-97.
  45. Theodorou, MK, BA Williams, MS Dhanoa, AB McAllan, and J France. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48(3), 185–197. https://doi.org/https://doi.org/10.1016/0377-8401(94)90171-6
  46. Tilley, J and RA Terry. 2006. A Two-Stage Technique for the in vitro Digestion of Forage Crops. Grass and Forage Science, 18, 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  47. Yu, J, N Paterson, J Blamey, and M Millan. 2017. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 191, 140–149. https://doi.org/https://doi.org/10.1016/j.fuel.2016.11.057
  48. Zakariah, MA, R Utomo, Z Bachruddin. 2016. Pengaruh Inokulasi Lactobacillus plantarum dan Saccharomyces cerevisiae terhadap Fermentasi dan Kecernaan In Vitro Silase Kulit Buah Kakao. Buletin Peternakan. 40(2): 124. https://doi.org/10.21059/buletinpeternak.v40i2.9294