Main Article Content

Abstract

Problems in dairy cattle agribusiness require attention not only from the farmers themselves but also from farmer organizations. To understand the communication patterns among group members in the agribusiness sector, including the exchange of information related to cattle production, animal health, and wholesale prices, it is essential to analyze the communication network of the dairy cattle farmer group. This network is significant because it serves as the hub of organizational communication, both internally and externally. This research seeks to analyze the communication structure of the dairy cattle farmer group and investigate the relationship between the respondent characteristics and the communication networks within the Tegal Mandiri farmer group in Bogor Regency. The Social Network Analysis (SNA) method and a quantitative approach were used to conduct the research, with the Tegal Mandiri farmer group members in Bogor Regency as the unit of analysis. The group communication structure was analyzed using degree and closeness centrality, and the relationship between respondent characteristics and the communication network was analyzed using Spearman rank correlation. IBM SPSS Statistics 26 and UCINET 6 were the tools used for analysis. The study revealed that 1) the average degree centrality of the group was between 1.00 and 2.20, and the average closeness centrality was between 400.00 and 558.10. 2) The respondents' characteristics of farmers were significantly related to the communication networks within the group. The study found that the communication structure of the Tegal Mandiri farmer group exhibited low connectivity and an ineffective coordination forum.

Keywords

agribusiness communication centrality dairy cattle information group SNA

Article Details

How to Cite
Gandasari, D., Sugiarto, M., & Dwidienawati, D. (2024). An Analysis of The Agribusiness Communication Structure of Dairy Cattle Farmers: The Case Study of The Tegal Mandiri Farmer Group. ANIMAL PRODUCTION, 26(2), 101-111. https://doi.org/10.20884/1.jap.2024.26.2.280

References

  1. Aguilar-Gallegos, N. and Romero-García, L. E. (2023) ‘Mapping the communication of agricultural knowledge, an application of social network analysis’, Redes, 34(2), pp. 201–222. doi: 10.5565/rev/redes.995.
  2. Borgatti, S. P., Everett, M. G. and Johnson, J. C. (2013) Analyzing Social Network. Edited by J. Seaman. London: SAGE Publications Ltd.
  3. Chapot, L. et al. (2023) ‘A qualitative analysis of health information-sharing networks in the Indonesian poultry sector’, Preventive Veterinary Medicine, 219(106003). doi: 10.1016/j.prevetmed.2023.106003.
  4. Cramer, M. E. et al. (2022) ‘Social Network Analysis of an Agricultural Center: Stakeholders and the Transfer of Information’, Journal of Agromedicine. Taylor & Francis, 27(1), pp. 75–86. doi: 10.1080/1059924X.2020.1850383.
  5. Devi, K. and Tripathi, R. (2020) ‘Social Network Analysis for efficient delivery of Agricultural Extension Services’, 2020 11th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2020. doi: 10.1109/ICCCNT49239.2020.9225274.
  6. Ensor, J. and de Bruin, A. (2022) ‘The role of learning in farmer-led innovation’, Agricultural Systems, 197(103356). doi: 10.1016/j.agsy.2021.103356.
  7. Eriyanto (2014) Analisis Jaringan Komunikasi: Strategi Baru dalam Penelitian Ilmu Komunikasi dan Ilmu Sosial Lainnya. Jakarta: Prenadamedia Group.
  8. Gandasari, D. (2014) Sistem Informasi dan Komunikasi Antar Organisasi Berbasis Aliansi pada Konsorsium Florikultura: Kasus Konsorsium Anggrek. Institut Pertanian Bogor.
  9. Gandasari, D. et al. (2020) ‘Analysis of agribusiness communication network among beef cattle farmers: Case study at sarimulya mandiri as the beginner’s farmers group’, International Journal of Advanced Science and Technology, 29(3), pp. 5339–5347.
  10. Gandasari, D. et al. (2022) ‘Social Network Analysis: Local and Global Centrality as the Communication Network Structure in the Beef Cattle Farmer Groups’, International Journal of Industrial Engineering and Production Research, 33(2), pp. 1–17. doi: 10.22068/ijiepr.33.2.14.
  11. Guerrero-Ocampo, S. B., Díaz-Puente, J. M. and Nuñez Espinoza, J. F. (2022) ‘Multi-Actor Partnerships for Agricultural Interactive Innovation: Findings from 17 Case Studies in Europe’, Land, 11(10). doi: 10.3390/land11101847.
  12. Herman, H., Madarisa, F. and Syahrial (2018) ‘Pengembangan Usaha Sapi Potong Kelompok Tani Ternak Hidayah Kampung Laban Kenagarian Salido Kabupaten Pesisir Selatan’, Jurnal Bisnis Tani, 4(1), pp. 61–76.
  13. Kementerian pertanian (2021) Buku Statistik Pertanian 2021.
  14. Kustepeli, Y. et al. (2023) ‘The role of agricultural development cooperatives in establishing social capital’, Annals of Regional Science. Springer Berlin Heidelberg, 70(3), pp. 681–704. doi: 10.1007/s00168-019-00965-4.
  15. Onumah, J. A., Asante, F. A. and Osei, R. D. (2021) ‘Actor roles and linkages in the agricultural innovation system: options for establishing a cocoa innovation platform in Ghana’, Innovation and Development. doi: 10.1080/2157930X.2021.1965752.
  16. Puspanjani, A. (2012) Studi Perbandingan Jaringan Komunikasi terhadap Difusi Adopsi Sistem Integrasi Padi-Ternak Sapi Bebas Limbah pada Kelompok Tani Marsudi Kromo Bogo dan Kelompok Tani Marsudi Utomo. Universitas Sebelas Maret.
  17. Rogers, E. M. and Kincaid, D. L. (1981) Communication Networks: Toward a New Paradigm for Research. Collier Macmillan Publishers.
  18. de Roo, N. et al. (2021) ‘Diffusion of agricultural knowledge in Southern Ethiopia: finding the real opinion leaders through network analysis’, Journal of Agricultural Education and Extension. Taylor & Francis, 0(0), pp. 1–17. doi: 10.1080/1389224X.2021.1987282.
  19. Saragih, B. (2001) Agribisnis. Paradigma Baru Pembangunan Ekonomi Berbasis Pertanian. Bogor: Pustaka Wirausaha Muda.
  20. Scribani, M. B. et al. (2021) ‘Evaluating the evolution of social networks: A ten-year longitudinal analysis of an agricultural, fishing and forestry occupational health research center’, International Journal of Environmental Research and Public Health, 18(24). doi: 10.3390/ijerph182412889.
  21. Simon, W. J. et al. (2021) ‘Putting social networks to practical use: Improving last-mile dissemination systems for climate and market information services in developing countries’, Climate Services. Elsevier B.V., 23(February), p. 100248. doi: 10.1016/j.cliser.2021.100248.
  22. Sugiyono (2020) Metode Penelitian Kuantitatif, Kualitatif dan Kombinasi (Mixed Methods). Bandung: Penerbit Alfabeta.
  23. Xavier, D. L. de J. et al. (2023) ‘Agricultural International Trade by Brazilian Ports: A Study Using Social Network Analysis’, Agriculture (Switzerland), 13(4), pp. 1–13. doi: 10.3390/agriculture13040864.
  24. Yuan, Y. and van Knippenberg, D. (2021) ‘Leader Network Centrality and Team Performance: Team Size as Moderator and Collaboration as Mediator’, Journal of Business and Psychology.