Main Article Content

Abstract

Greenhouse gas (GHG) emissions were a major causal factor of global warming that further impacts climate change. This study aimed to inventory the sources of greenhouse gas emissions from the livestock sector in Bangka Belitung. The GHG emissions in the livestock sector was calculated using the Tier-2 method based on guidance from IPCC 2006. Secondary data were collected from multiple sources, including livestock population, enteric CH4 emission factors, and the production and management of local livestock manure. The results of the calculation of GHG emissions in Bangka Belitung from 2018-2022 showed a significant increase from 25.54 to 33.32 Gg CO2 eq, with an accumulation of 139.43 Gg CO2 eq over five years. Beef cattle became the largest contributor to GHG emissions, with enteric fermentation CH4 emissions of 104.34 Gg CO2 eq, accounting for 91.90% of the total CH4 emissions from enteric fermentation sources and 74.84% of the total GHG emissions in Bangka Belitung. The largest contributor to GHG emissions was 78.62% or 109.62 Gg CO2 eq from enteric fermentation sources of ruminants, while N2O emissions from manure management reached 29.10 Gg CO2 eq, and the smallest CH4 emissions were 0.70 Gg CO2 eq, sourced from livestock manure

Keywords

Dinitro Oxide Greenhouse Gas Livestock Methane Tropical

Article Details

How to Cite
Puspito, S., Wardi, Haryanto, B., Suharyanto, Andri Yano, A., Firmansyah, A. M., Hayati, R. N., Ismiarti, & Pratiwi, N. N. (2024). Greenhouse Gas Emissions (GHG) Estimation in the Livestock Sector in Bangka Belitung Province using the IPCC Tier-2 Method. ANIMAL PRODUCTION, 26(1), 45-56. https://doi.org/10.20884/1.jap.2024.26.1.259-1

References

  1. Agus F (Ed). 2019. Metode Penilaian Adaptasi dan Inventarisasi Gas Rumah Kaca Sektor Pertanian. Badan Penelitian dan Pengembangan Pertanian (Balitbangtan), Jakarta.
  2. https://docplayer.info/169146961-Metode-penilaian-adaptasi-dan-inventarisasi-gas-rumah-kaca-sektor-pertanian.html
  3. Aguinaga Casañas, M. A., Rangkasenee, N., Krattenmacher, N., Thaller, G., Metges, C. C., & Kuhla, B. (2015). Methyl-coenzyme M reductase A as an indicator to estimate methane production from dairy cows. Journal of Dairy Science, 98(6), 4074–4083. https://doi.org/10.3168/jds.2015-9310
  4. Arneth, A., F. Denton, F. Agus, A. Elbehri, K. Erb, B. Osman Elasha, M. Rahimi, M. Rounsevell, A. Spence, R. Valentini, 2019: Framing and Context. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. https://doi.org/10.1017/9781009157988.003
  5. Albani, F., Pikoli, M. R., & Sugoro, I. (2018). Type of Feed Affects Biogas Production from Elephant Feces, a Study Case of Sumateran Elephant (Elephas maximus sumatranus Temminck, 1847) in Ragunan Wildlife Park, South Jakarta. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 8(2), 264–270.
  6. Collins, W. J., Webber, C. P., Cox, P. M., Huntingford, C., Lowe, J., Sitch, S., Chadburn, S. E., Comyn-Platt, E., Harper, A. B., Hayman, G., & Powell, T. (2018). Increased importance of methane reduction for a 1.5 degree target. Environmental Research Letters, 13(5). https://doi.org/10.1088/1748-9326/aab89c
  7. Danielsson, R., Dicksved, J., Sun, L., Gonda, H., Müller, B., Schnürer, A., & Bertilsson, J. (2017). Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Frontiers in Microbiology, 8(FEB), 1–15. https://doi.org/10.3389/fmicb.2017.00226
  8. Directorate General of Livestock and Animal Health. 2022. Animal Husbandry and Health Statistics. Jakarta, Indonesia). Directorate General of Livestock and Animal Health. Ministry of Agriculture
  9. https://ditjenpkh.pertanian.go.id/storage/photos/shares/konten/publikasi/files/Buku_Statistik_2019.pdf
  10. Directorate of Greenhouse Gas Inventory. 2019. Greenhouse Gas (GHG) Inventory Report and Monitoring, Reporting, Verification (MPV) 2018 Jakarta (Indonesia). Directorate General of Climate Change Control. Ministry of Environment and Forestry
  11. https://signsmart.menlhk.go.id/v2.1/app/frontend/pedoman/detail/22
  12. Dlamini, A. M., & Dube, M. A. (2014). Contribution of Animal Agriculture to Greenhouse Gases Production in Swaziland. American Journal of Climate Change, 03(03), 253–260. https://doi.org/10.4236/ajcc.2014.33024
  13. Effect of Sambucus peruviana and Tithonia diversifolia silage on methane emissions by Holstein cows fed Cenchrus clandestinus. (2023). 4, 1–11.
  14. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452
  15. Gaviria-Uribe, X., Chirinda, N., Barahona-Rosales, R., Bolívar-Vergara, D. M., Rosenstock, T., & Arango, J. (2020). Measurement of methane emissions in cattle with infrared gas analyzer and gas chromatography. Revista U.D.C.A Actualidad and Divulgacion Cientifica, 23(2), 1–6. https://doi.org/10.31910/rudca.v23.n2.2020.1365
  16. Griffin, S. G., Wyllie, S. G., Markham, J. L., & Leach, D. N. (1999). The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour and Fragrance Journal, 14(5), 322–332. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<322::AID-FFJ837>3.0.CO;2-4
  17. Herliatika, A., & Widiawati, Y. (2021). Mitigasi Emisi Metana Enterik melalui Modifikasi Pakan dan Manipulasi Rumen. Wartazoa, 31(1), 1–12.
  18. Hidayah, N. (2016). Utilization of Plant Secondary Metabolites Compounds ( Tannin and Saponin ) to Reduce Methane Emissions from Ruminant Livestock. Jurnal Sains Peternakan Indonesia, 11(2), 89–98.
  19. Hidup, D., Cahyaputri, B., & Yani, M. (2021). Implementasi Penilaian Daur Hidup Produk Susu Sapi Segar (Studi Kasus Koperasi Peternak Mjm). Jurnal Teknologi Industri Pertanian, 31(1), 78–87. https://doi.org/10.24961/j.tek.ind.pert.2021.31.1.78
  20. IPCC 2006 . 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan https://www.ipcc-nggip.iges.or.jp/support/Primer_2006GLs.pdf
  21. IPCC 2019. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). Published: IPCC, Switzerland https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/0_Overview/19R_V0_00_Cover_Foreword_Preface_Dedication.pdf
  22. Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231–3261. https://doi.org/10.3168/jds.2013-7234
  23. Króliczewska, B., Pecka-Kiełb, E., & Bujok, J. (2023). Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture (Switzerland), 13(3). https://doi.org/10.3390/agriculture13030602
  24. Liu, Z., & Liu, Y. (2018). Mitigation of greenhouse gas emissions from animal production. Greenhouse Gases: Science and Technology, 8(4), 627–638. https://doi.org/10.1002/ghg.1785
  25. Lopez-Romero, J. C., González-Ríos, H., Borges, A., & Simões, M. (2015). Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/795435
  26. Narabe, C., Kamiyama, S., Saito, M., Boonsaen, P., Khongpradit, A., Sawanon, S., Suzuki, Y., Koike, S., & Kobayashi, Y. (2021). Cashew nut shell liquid potentially mitigates methane emission from the feces of Thai native ruminant livestock by modifying fecal microbiota. Animal Science Journal, 92(1), 1–10. https://doi.org/10.1111/asj.13614
  27. Nurhayati, I., & Widiawati, Y. (2017). Emisi Gas Rumah Kaca dari Peternakan di Pulau Jawa yang Dihitung dengan Metode Tier-1 IPCC (Greenhouse Gas Emissions from Livestock in Java Island Calculated by IPCC Tier-1 Method). Prosiding Seminar Nasional Teknologi Peternakan Dan Veteriner, 292–300. http://dx.doi.org/10.14334/Pros.Semnas.TPV-2017-p.292-300
  28. Pragna, P., Chauhan, S. S., Sejian, V., Leury, B. J., & Dunshea, F. R. (2018). Climate change and goat production: Enteric methane emission and its mitigation. Animals, 8(12), 1–17. https://doi.org/10.3390/ani8120235
  29. Rahmat, A. N., Suryapratama, W., & Suhartati, F. (2021). Concentration of Partial VFA and Methane Production of Beef Cattle Rument Fluid which Red Dragon Fruit Skin (Hylocereus costaricensis) and Guava Leaf (Psidium guajava L.) in Ammoniated Rice Straw Based Ration. ANIMAL PRODUCTION, 22(3), 173-180. https://doi.org/10.20884/1.jap.2020.22.3.21
  30. Retno L, T. D., Aplikasi Teknologi Isotop dan Radiasi -BATAN, P., Jumat, P., & Balai Penelitian Bioteknologi Hasil Perkebunan, J. (2012). PEMANFAATAN BAGASE TEBU DAN LIMBAH NANAS SEBAGAI BAHAN BAKU PENGHASIL BIOGAS Utilization of Sugarcane Bagasse and Pineapple Waste for Biogas Production. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 2(2), 56–64.
  31. Ridoutt, B., Lehnert, S. A., Denman, S., Charmley, E., Kinley, R., & Dominik, S. (2022). Potential GHG emission benefits of Asparagopsis taxiformis feed supplement in Australian beef cattle feedlots. Journal of Cleaner Production, 337, 130499. https://doi.org/10.1016/j.jclepro.2022.130499
  32. Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001
  33. Romero, T., Pérez-Baena, I., Larsen, T., Gomis-Tena, J., Loor, J. J., & Fernández, C. (2020). Inclusion of lemon leaves and rice straw into compound feed and its effect on nutrient balance, milk yield, and methane emissions in dairy goats. Journal of Dairy Science, 103(7), 6178–6189. https://doi.org/10.3168/jds.2020-18168
  34. Skulska, E., Anr, S. N. R., International, L. L. M., & Law, E. (2022). Reduction of methane emissions as a multilateral obligation of states Reduction of methane emissions from livestock as a necessary step in meeting the temperature target of the Paris Agreement. June.
  35. Suhartati, F. (2020). Indigofera zollingeriana Leaf Extract Reduces Sheep Rumen Methane Production in Vitro. ANIMAL PRODUCTION, 22(1), 16-23. https://doi.org/10.20884/1.jap.2020.22.1.39
  36. Tan, H. Y., Sieo, C. C., Abdullah, N., Liang, J. B., Huang, X. D., & Ho, Y. W. (2011). Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Animal Feed Science and Technology, 169(3–4), 185–193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
  37. Tapio, I., Snelling, T. J., Strozzi, F., & Wallace, R. J. (2017). The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 8(1), 1–11. https://doi.org/10.1186/s40104-017-0141-0
  38. van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494–501. https://doi.org/10.1038/s43016-021-00322-9
  39. Vongkhamchanh, B., Inthapanya, S., & Preston, T. R. (2015). Methane production in an in vitro rumen fermentation is reduced when the carbohydrate substrate is fresh rather than ensiled or dried cassava root, and when biochar is added to the substrate. Livestock Research for Rural Development, 27(10), 1–7.
  40. Watanabe, Y., Suzuki, R., Koike, S., Nagashima, K., Mochizuki, M., Forster, R. J., & Kobayashi, Y. (2010). In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. Journal of Dairy Science, 93(11), 5258–5267. https://doi.org/10.3168/jds.2009-2754