Main Article Content

Abstract

The interaction of Hibiscus Leaf Meal (HLM) and Direct-Fed Microbials (DFM) supplementation on nitrogen metabolism and rumen microbial synthesis by local sheep was investigated. Thirty six male local sheep aged ±2 years, weight 28.01±2.61 kg were fed concentrate (3% of body weight) supplemented with HLM twice a day, amoniated rice-straw (ARS) supplemented with DFM were given ad-libitum were assigned randomly to nine treatment in an experiment of 3×3 factorial design. The first factor (P) was DFM were supplemented in ARS (P0=without DFM, P1=DFMAMS, and P2=DFMRK). Second factor (W) was the level of HLM supplementation in concentrate (W0=0%, W1=0.24% and W2=0.48% of DM consentrate. The study measured variables including nitrogen digestibility (ND), nitrogen retention (NR), microbial protein synthesis (MPS), and Efficiency of microbial protein synthesis (EMPS). There were significant interaction between DFM and HLM suplementation on MPS and EMPS. However, the interaction of ND and NR was non-existent. Based on polynomial graph, the most efficient MPS was achieved on combination between DFMRK and 0.23% HLM about 8.70 gN/day. Despite the absence of interaction (P>0.05) between DFM supplementation and HLM on KN and RN, DFM supplementation significantly affected (P<0.01) Nitrogen metabolism (ND and NR). The treatment without DFM supplementation resulted the highest nitrogen metabolism (ND and NR). This study concludes that HLM without DFM suplementation positively impacted N Metabolism. Combination between 0.23% HLM and DFMRK resulted the most efficient Microbial Protein Synthesis.

Keywords

Sheep Hibiscus DFM Nitrogen-metabolism Microbial Protein Synthesis

Article Details

How to Cite
Nasution, R. A. P., Rahayu, S., & Bata, M. (2021). Nitrogen Metabolism and Microbial Protein Synthesis by Local Sheep Fed Diet Containing Hibiscus Leave Meal (HLM) with Different Direct-Fed Microbials (DFM) Supplementation. ANIMAL PRODUCTION, 22(3), 137-147. https://doi.org/10.20884/1.jap.2020.22.3.22

References

  1. AOAC. 2005. Official Methods of Analysis of the Association of Analytical Chemists International. 18th ed. MD U.S.A Official methods, Gathersburg.
  2. Azzaz, H. H., T. A. Morsy, and H. A. Murad. 2016. Microbial Feed Enhancement Supplements for Ruminant ’s Performance Enchacement. Asian J. Agric. Res. 10:1–14.
  3. Balcells, J., A. Aris, A. Serrano, A. R. Seradj, J. Crespo, and M. Devant. 2012. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets. J. Anim. Sci. 90:4975-4984.
  4. Banerjee, G. C. 1978. Animal Nutrition. Oxford & IBM Pub.Co Calcutta.
  5. Bata, M., and S. Rahayu. 2017. Evaluation of Bioactive Substances in Hibiscus tiliaceus and its Potential as a Ruminant Feed Additive. Bentham Sci. 13:157–164.
  6. Bata, M., S. Rahayu, and N. Hidayat. 2016. Performan Sapi Sumba Ongole (SO) yang Diberi Jerami Padi Amoniasi dan Konsentrat yang Disuplementasi dengan Tepung Daun Waru (Hibiscus tiliaceus). Agripet. 16:106–113.
  7. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72:248–254.
  8. Buntyn, J. O., T. B. Schmidt, D. J. Nisbet, and T. R. Callaway. 2015. The Role of Direct-Fed Microbials in Conventional Livestock Production. Annu. Rev. Anim. Biosci. 4:335–355.
  9. Chen, X. B., and M. J. Gomes. 1995. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives - an Overview of the Technical Details. Int. Feed Resour. Unit. 1–21.
  10. Cole, H. H., and M. Ronning. 1974. Animal Agricultural. The Biology of Domestic Animals and Their Use by Man. W.H. Freeman & Co., San Fransisco.
  11. Dawes, E. A., and W. H. Holms. 1957. Metabolism of Sarcina Lutea. J. Bacteriol. 75:390–399.
  12. Ditjennak. 2018. Statistik Peternakan dan Kesehatan Hewan. Jakarta.
  13. Elghandour, M. M. Y., A. Z. M. Salem, J. S. M. Castañeda, L. M. Camacho, A. E. Kholif, and J. C. V. Chagoyán. 2015. Direct-Fed Microbes: A Tool for Improving the Utilization of Low Quality Roughages in Ruminants. J. Integr. Agric. 14:526–533.
  14. Ghorbani, G. R., D. P. Morgavi, K. A. Beauchemin, and J. A. Z. Leedle. 2018. Effects of Bacterial Direct-Fed Microbials on Ruminal Fermentation, Blood Variables and the Microbial Populations of Feedlot Cattle. J. Anim. Sci. 80:1977–1985.
  15. Gosselink, J. M. ., C. Poncet, J. . Dulphy, and J. . Cone. 2003. Stimation of Duodenal Flow of Microbial Nitrogen in Ruminants Based on The Chemical Composition of Forage : A Literature Review. Anim. Res. EDP Sci. 52:229–243.
  16. Hanum, Z., and Y. Usman. 2011. Analisis Proksimat Amoniasi Jerami Padi dengan Penambahan Isi Rumen. Agripet. 11:39–44.
  17. Hartadi, H., S. Reksohadiprodjo, and A. D. Tillman. 2017. Tabel Komposisi Pakan untuk Indonesia. 6th ed. Gadjah Mada University Press, Yogyakarta.
  18. Holmes, C. W., and G. F. Wilson. 1984. Milk Production from Pasture. Butterworths Agric.Book, Wellington New Zealand.
  19. Kalantar M. 2018. The Importance of Flavonoids in Ruminant Nutrition. Arch Animal Husb & Dairy Sci. 1(1): 1-4. AAHDS.MS.ID.000504.
  20. Khan MA, M Sarwar, M Nisa and MS Khan. 2004. Influence of enzose on feeding value of urea treated corncobs in lactating crossbred cows. Asian-Aust. J. Anim. Sci. 17:70-74.
  21. Khan, R. U., S. Naz, K. Dhama, K. Karthik, R. Tiwari, M. M. Abdelrahman, I. A. Alhidary, and A. Zahoor. 2016. Direct-Fed Microbial: Beneficial Applications, Modes of Action and Prospects as A Safe Tool for Enhancing Ruminant Production and Safe Guarding Health. J. Int. Pharmacol. 12:220–231.
  22. Kishan, J., and U. B. Singh. 1980. Relationship Between Nitrogen Intake and Excretion in Cattle and Buffaloes Fed Different Fodders. Indian J. Anim. Sci. 50:128–130.
  23. Krehbiel, C. R., S. R. Rust, G. Zhang, and S. E. Gilliland. 2003. Bacterial Direct-Fed Microbials in Ruminant Diets : Performance Response and Mode of Action. J. Anim. Sci. 18:120–132.
  24. Kurniawati, A. 2007. In-vitro Gas Production Technic for feed evaluation: Gas Volume and feed digestion J. Ilm. Apl. Isot. dan Radiasi. 3:40–49.
  25. Lloyd, L. E., B. E. McDonald, and E. W. Crampton. 1978. Fundamentals of Nutrition. 2nd ed. W.H. Freeman and Co., Reading, UK.
  26. McAllister, T. A., K. A. Beauchemin, A. Y. Alazzeh, J. Baah, R. M. Teather, and K. Stanford. 2011. Review: The Use of Direct Fed Microbials to Mitigate Pathogens and Enhance Production in Cattle. Can. J. Anim. Sci. 91:193–211.
  27. McDonald, P., R. . Edwards, and J. F. . Greenhalgh. 2002. Animal Nutrition. 6th ed. New York.
  28. Mutaqin, B.K., Tanuwiria, U.H., Hernawan, E. 2018. Invitro Study on the Fluid From Banana Stem Bioprocess as Direct Fed Microbial. In: IOP Conf. Series : Earth Environ. Sci. Vol. 119. Pp. 1–7.
  29. Ngadiyono, N., H. Hartadi, M. Winugroho, D. D. Siswansyah, and S. N. Ahmad. 2001. Pengaruh Pemberian Bioplus terhadap Kinerja Sapi Madura di Kalimantan Tengah. JITV. 6:69–75.
  30. Pathak, A. K. 2008. Various Factors Affecting Microbial Protein Synthesis in the Rumen. Vet. World. 1:186–189.
  31. Patra, A., and J. Saxena. 2009. The Effect and Mode of Action of Saponins on the Microbial Populations and Fermentation in the Rumen and Ruminant Production. Nutr. Res. Rev. 22:204–219.
  32. Puastuti, W., D. Yulistiani, and I.-W. Mathius. 2012. Respon Fermentasi Rumen dan Retensi Nitrogen dari Domba yang Diberi Protein Tahan Degradasi dalam Rumen. JITV. 17:67–72.
  33. Putra, D., L. M. Yustiati, and R. Utomo. 2016. Estimasi Sintesis Protein Mikrobia Rumen Menggunakan Ekskresi Derivat Purin dalam Urin dengan Teknik Spot Sampling pada Kambing Bligon dan Kambing Kejobong. Bultein Pet. 40:178–186.
  34. Ranjhan, S. K. 1977. Animal Nutrition and Feeding Practices in India. (F. A. O. of the UN, editor.). Vikas Pub. House, New Delhi.
  35. Sairullah, P., S. Chuzaemi, and H. Sudarwati. 2016. Effect of Flour and Papaya Leaf Extract (Caricapapaya L.) in Feed to Ammonia Concentration, Volatile Fatty Acids and Microbial Protein Synthesis in Vitro. J. Ternak Trop. 17:66–73.
  36. Santoso, S. E., L. Soesanto, and T. A. D. Haryanto. 2007. Penekanan Hayati Penyakit Moler pada Bawang Merah dengan Trichoderma harzianum, Trichoderma koningii, dan Pseudomonas P60. J. HPT Trop. 7:53–61.
  37. Seo, J. K., S. W. Kim, M. H. Kim, S. D. Upadhaya, D. K. Kam, and J. K. Ha. 2010. Direct-Fed Microbials for Ruminant Animals. Asian Aust. J. Anim. Sci. 23:1657–1667.
  38. Seradj AR, Abecia L, Crespo J, Villalba D, Fondevila M, Balcells J (2014) The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim Feed Sci Technol 197: 85-91.
  39. Sniffen, C. J., and P. H. Robinson. 1987. Microbial Growth and Flow as Influenced by Dietary Manipulations. J. Dairy Sci. 70:425–441.
  40. Steel, R. G. D., and J. H. Torrie. 1991. Prinsip dan Prosedur Statistika Suatu Pendekatan Biometrik. (B. Sumantri, editor.). PT. Gramedia, Jakarta.
  41. Suryani, H., M. Zain, R. W. S. Ningrat, and N. Jamarun. 2017. Effect of Dietary Supplementation Based on an Ammoniated Palm Frond with Direct-Fed Microbials and Virgin Coconut Oil on The Growth Performance and Methane Production of Bali Cattle. Pak. J. Nutr. 16:599–604.
  42. Sutardi. 1992. Pengembangan Pakan Ternak Ruminansia. In: Seminar Nasional Bidang Peternakan. Bogor. Pp. 52–76.
  43. Tukey, J. W. 1953. The Problem of Multiple Comparisons, 1953, Princeton University. New Jersey.
  44. Wina, E. 2005. Teknologi Pemanfaatan Mikroorganisme dalam Pakan untuk Meningkatkan Produktivitas Ternak Ruminansia di Indonesia; Sebuah Review. J. War. 15:173–186.
  45. Wina, E., I. W. . Susana, and T. Pasaribu. 2008. Pemanfaatan Bungkil Jarak Pagar (Jatropha curcas) dan Kendalanya sebagai Bahan Pakan Ternak. Wartazoa. 18:1–8.